DOI QR코드

DOI QR Code

Broadband energy harvester for varied tram vibration frequency using 2-DOF mass-spring-damper system

  • Hamza Umar (Department of Mechanical Engineering, University of Maryland Baltimore County) ;
  • Christopher Mullen (Department of Mechanical Engineering, University of Maryland Baltimore County) ;
  • Soobum Lee (Department of Mechanical Engineering, University of Maryland Baltimore County) ;
  • Jaeyun Lee (CORECHIPS Co., Ltd.) ;
  • Jaehoon Kim (Korea Railroad Research Institute)
  • Received : 2023.10.31
  • Accepted : 2023.11.21
  • Published : 2023.12.25

Abstract

Energy harvesting in trams may become a prevalent source of passive energy generation due to the high density of vibrational energy, and this may help power structural health monitoring systems for the trams. This paper presents a broadband vibrational energy harvesting device design that utilizes a varied frequency from a tram vehicle using a 2 DOF vibrational system combined with electromagnetic energy conversion. This paper will demonstrate stepwise optimization processes to determine mechanical parameters for frequency tuning to adjust to the trams' operational conditions, and electromagnetic parameters for the whole system design to maximize power output. The initial optimization will determine 5 important design parameters in a 2 DOF vibrational system, namely the masses (m1, m2 (and spring constants (k1, k2, k3). The second step will use these parameters as initial guesses for the second optimization which will maintain the ratios of these parameters and present electrical parameters to maximize the power output from this system. The obtained values indicated a successful demonstration of design optimization as the average power generated increased from 1.475 mW to 17.44 mW (around 12 times).

Keywords

Acknowledgement

This work is supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 1615013220) and Korea Institute for Advancement of Technology (KIAT) grant funded by the Ministry of Trade, Industry and Energy (Project P0018646).

References

  1. Burrow, S.G. and Penrose, L. (2014), "A 2 DOF vibration harvester for broadband and multifrequency harvesting using a single electro-magnetic transducer", J. Phys., 557, p. 012031. https://doi.org/10.1088/1742-6596/557/1/012031
  2. Dalala, Z.M. (2016), "Energy harvesting using thermoelectric generators", Proceedings of 2016 IEEE International Energy Conference (ENERGYCON), Leuven, Belgium, pp. 1-6. https://doi.org/10.1109/ENERGYCON.2016.7514088
  3. Davidson, J. and Mo, C. (2014), "Recent advances in energy harvesting technologies for structural health monitoring applications", Smart Mater. Res., Article ID 410316, 14 p. https://doi.org/10.1155/2014/410316
  4. Kim, J. (2021), "A study on the energy-harvesting device with a magnetic spring for improved durability in high-speed trains", Micromachines (Basel), 12(7), 830. https://doi.org/10.3390/mi12070830
  5. Kim, K.A., Bagci, F.S. and Dorsey, K.L. (2022), "Design considerations for photovoltaic energy harvesting in wearable devices", Sci. Rep. 12, 18143. https://doi.org/10.1038/s41598-022-22232-x
  6. Korenov, B. and Reznikov, L. (1994), "Dynamic vibration absorbers: theory and technical applications", Choice Reviews Online, 31(11), 31-6071. https://doi.org/10.5860/choice.31-6071
  7. Lee, S., Youn, B.D. and Jung, B.C. (2009), "Robust segment-type energy harvester and its application to a wireless sensor", Smart Mater. Struct., 18(9), 095021. https://doi.org/10.1088/0964-1726/18/9/095021
  8. Lu, D., Li, Z., Hu, G., Zhou, B., Yang, Y. and Zhang, G. (2022), "Two-degree-of-freedom piezoelectric energy harvesting from vortex-induced vibration", Micromachines, 13(11), 1936. https://doi.org/10.3390/mi13111936
  9. Meirovitch, L. (2001), Fundamentals of Vibrations, McGraw-Hill, Boston, MA, USA.
  10. Monaco, M.L. and Russo, C. (2023), "Design methodology of a two-degrees-of-freedom gravitational energy harvester", In: IOP Conference Series, 1275(1), p. 012042. https://doi.org/10.1088/1757-899x/1275/1/012042
  11. Mullen, C. (2017), "Design Optimization of an Electromagnetic Energy Harvester Backpack for Utilization of Human Walking Energy", Thesis.
  12. Mullen, C. and Lee, S. (2016), "Optimization of an electromagnetic energy harvesting backpack under actual walking and running scenarios", Proceedings of the ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Stowe, VM, USA, September. https://doi.org/10.1115/SMASIS2016-9291
  13. Nezami, S., Lee, S., Jin, J. and Kang, K. (2018), "Shape optimization of railroad vibration energy harvester for structural robustness and power generation performance", Eng. Struct., 173, 460-471. https://doi.org/10.1016/j.engstruct.2018.07.011
  14. Park, G., Rosing, T., Todd, M.D., Farrar, C.R. and Hodgkiss, W. (2008), "Energy harvesting for structural health monitoring sensor networks", J. Infrastr. Syst., 14(1), 64-79. https://doi.org/10.1061/(ASCE)1076-0342(2008)14:1(64)
  15. Perez, M., Chesne, S., Jean-Mistral, C., Billon, K., Augez, R. and Clerc, C. (2020), "A two degree-of-freedom linear vibration energy harvester for tram applications", Mech. Syst. Signal Process., 140, 106657. https://doi.org/10.1016/j.ymssp.2020.106657
  16. Qi, L., Pan, H., Pan, Y., Luo, D., Yan, J. and Zhang, Z. (2022), "A review of vibration energy harvesting in rail transportation field", iScience, 25(3), 103849. https://doi.org/10.1016/j.isci.2022.103849
  17. Roundy, S. and Takahashi, E. (2013), "A planar electromagnetic energy harvesting transducer using a multi-pole magnetic plate", Sensors Actuators A: Phys., 195, 98-104. https://doi.org/10.1016/j.sna.2013.03.018
  18. Ung, C., Moss, S.D. and Chiu, W.K. (2015), "Electromagnetic energy harvester using coupled oscillating system with 2-degree of freedom", Proceedings of SPIE, 94312C. https://doi.org/10.1117/12.2084416
  19. Wheeler, H.A. (1928), "Simple inductance formulas for radio coils", Proceedings of the Institute of Radio Engineers, 16(10), 1398-1400. https://doi.org/10.1109/JRPROC.1928.221309
  20. Yu, N., Ma, H., Wu, C., Yu, G. and Yan, B. (2021), "Modeling and experimental investigation of a novel bistable two-degree-of-freedom electromagnetic energy harvester", Mech. Syst. Signal Process., 156, 107608. https://doi.org/10.1016/j.ymssp.2021.107608