Browse > Article

Collection Characteristics of Multi-layer Multi-stage Porous Plate System  

Kim, I.K. (부경대학교 환경공학과)
Yoa, S.J. (부경대학교 환경공학과)
Publication Information
Journal of Power System Engineering / v.14, no.5, 2010 , pp. 10-16 More about this Journal
Abstract
The main object of this study is to investigate the collection characteristics of multi-layer multi-stage porous plate system experimentally. The experiment is carried out to analyze the characteristics of pressure drop and collection efficiency for the present system with the experimental parameters such as inlet velocity, tube diameter, inlet concentration, and stage number, etc. In results, the pressure drop becomes 22 to $115mmH_2O$ with increment of stage number (1 to 5) of porous plate system at tube velocity 15 m/s and tube diameter ${\Phi}8$. In case of fly ash and 5 stage, the collection efficiency becomes 90.5 to 95.7% increasing the tube velocity 12 to 15 m/s at inlet concentration $3g/m^3$ and tube diameter ${\Phi}8$. Additionally, it is estimated that the collection efficiencies of 5 stage are 94.3, 95.6 and 99.1% for fly ash, steel dust and based power, respectively (${\Phi}8$ tube, $V_t$ = 12m/s, inlet concentration $3g/m^3$).
Keywords
Multi-layer Multi-stage Porous Plate; Pressure Drop; Collection Efficiency; Stage Number;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bahman A. and Matthew N. G., 1997, "Transport and Deposition of Particles and Fibers in a Virtual Impactor", Aerosol Sci. Technol., Vol. 27, pp. 499-506.   DOI   ScienceOn
2 Daniel J. R. and Anthony S. G., 1998, "Showerhead-enhanced inertial particle deposition in parallel plate reactors". Aerosol Sci. Technol., Vol. 28, pp. 105-132.   DOI   ScienceOn
3 Parcker C. R., 1993, Aerosol science and technology, McGraw-Hill Inc., pp. 104-105.
4 Swanson P. D. et al., 1996, "Numerical analysis of motion and deposition of particles in cascade impactors", Int. J. Pharm., Vol. 142, pp. 33-51.   DOI   ScienceOn
5 Daniel M., Pierre P. and Marcel B., 1999, "A Versatile Flat-Deposit Impactor-Type Aerosol Collector, Part 1 : Design and Qualitative Study", Aerosol Sci. Technol., Vol. 31, pp. 323-337.   DOI   ScienceOn
6 Daniel M., Pierre P. and Marcel B., 1999, "A Versatile Flat-Deposit Impactor-Type Aerosol Collector, Part 2 : Calibration and Quantitative Study", Aerosol Sci. Technol., Vol. 31, pp. 338-349.   DOI   ScienceOn
7 Yoshikazu K. et al., 1995, "Improvement of multi-jet low pressure impactor for high collection efficiency of UF5 in the molecular laser isotope separation of uranium", J. Nucl. Mater., Vol. 224, pp. 43-49.   DOI   ScienceOn
8 Annele V. et al., 2001, "Fine particle losses in electrical low-pressure impactor", J. Aerosol Sci., Vol. 32, pp. 389-401.
9 Marko M. et al., 2000, "Performance evaluation of the Electrical Low-Pressure Impactor (ELPI)", J. Aerosol Sci., Vol. 32, No. 2, pp. 249-261.
10 Klaus W., Xuejun L. and Sergey A. G., 1998, "Improved Aerosol Collection by Combined Impaction and Centrifugal Motion", Aerosol Sci. Technol., Vol. 28, No. 5, pp. 439-456.   DOI   ScienceOn
11 Huang C. H. and Tsai C. J., 2001, "Effect of gravity on particle collection efficiency of inertial impactors", J. Aerosol Sci., Vol. 32, pp. 357-387.   DOI   ScienceOn
12 Novick V. J. and Alvalez J. L., 1987, "Design of a Multistage virtual Impactor", Aerosol Sci. Technol., Vol. 6, pp. 63-70.   DOI   ScienceOn
13 Benjamin J. and Wang H. C., 1995, "On the shape of impactor efficiency curves", J. Aerosol Sci., Vol. 26, No. 7, pp. 1139-1147.   DOI   ScienceOn
14 Jiro K. et al., 1991, "Separation Efficiency of Particles in Low Pressure Virtual Impactor", J. Nucl. Mater., Vol. 28, pp. 166-169.
15 Tsai C. J. and Cheng Y. H., 1995, "Solid Particle Collection Characteristics on Impaction Surface of Different Designs", Aerosol Sci. Technol., Vol. 23, pp. 96-106.   DOI   ScienceOn