• 제목/요약/키워드: mRNAs

검색결과 688건 처리시간 0.029초

Drug Discovery Perspectives of Antisense Oligonucleotides

  • Yeonjoon Kim
    • Biomolecules & Therapeutics
    • /
    • 제31권3호
    • /
    • pp.241-252
    • /
    • 2023
  • The era of innovative RNA therapies using antisense oligonucleotides (ASOs), siRNAs, and mRNAs is beginning. Since the emergence of the concept of ASOs in 1978, it took more than 20 years before they were developed into drugs for commercial use. Nine ASO drugs have been approved to date. However, they target only rare genetic diseases, and the number of chemistries and mechanisms of action of ASOs are limited. Nevertheless, ASOs are accepted as a powerful modality for next-generation medicines as they can theoretically target all disease-related RNAs, including (undruggable) protein-coding RNAs and non-coding RNAs. In addition, ASOs can not only downregulate but also upregulate gene expression through diverse mechanisms of action. This review summarizes the achievements in medicinal chemistry that enabled the translation of the ASO concept into real drugs, the molecular mechanisms of action of ASOs, the structure-activity relationship of ASO-protein binding, and the pharmacology, pharmacokinetics, and toxicology of ASOs. In addition, it discusses recent advances in medicinal chemistry in improving the therapeutic potential of ASOs by reducing their toxicity and enhancing their cellular uptake.

부동스트레스가 흰쥐 뇌 조직 내 TH, BDH와 CRH 유전자 발현에 미치는 영향 (Effect of immobilization stress on the expression of TH, BDH and CRH gene in rat brain)

  • 천영일;김윤식
    • Journal of Genetic Medicine
    • /
    • 제4권2호
    • /
    • pp.179-185
    • /
    • 2007
  • 목 적:카테콜라민은 교감신경계에서 신경전달물질이며 스트레스자극에 의해 활성화된다. TH와 DBH는 카테콜라민 합성에 매우 중요한 효소이다. CRH는 스트레스 반응에서 방출되는 호르몬이다. 이번 연구의 목적은 부동스트레스가 흰쥐 뇌에서 TH, BDH와 CRH 유전자발현에 어떤 영향을 미치는가를 알아보기 위한 것이다. 방 법:2시간 동안 부동스트레스와 무처치 흰쥐의 뇌에서 TH, DBH와 CRH 유전자 발현량을 비교하였다. TH, DBH와 CRH 유전자 발현은 RT-PCR과 western blotting analysis에 의해 정량하였다. 결 과:부동스트레스 흰쥐 그룹의 뇌와 부신에서 TH와 DBH 유전자발현은 정상그룹보다도 약 2-3배 유의하게 증가하였으며, CRH유전자는 약 1.5배 유의하게 증가하였다. 결 론:이번 연구는 흰쥐의 뇌와 부신에서 TH, DBH와 CRH 유전자는 스트레스 자극에 의해 발현이 활성화됨을 확인할 수 있었다.

  • PDF

Effect of Polyamines on Cellular Differentiation of N. gruberi: Inhibition of Translation of Tubulin mRNA

  • Yoo, Jin-Uk;Kwon, Kyung-Soon;Cho, Hyun-Il;Kim, Dae-Myung;Chung, In-Kwon;Kim, Young-Min;Lee, Tae-Ho;Lee, Joo-Hun
    • Journal of Microbiology
    • /
    • 제35권4호
    • /
    • pp.315-322
    • /
    • 1997
  • The effects of a polyamine, spermine, on the differentiation of Naegleria gruberi amebas into flagellates were tested. Addition of spermine at early stages of differentiation (until 40 min after the initiation of differentiation) completely inhibited the differentiation. To understand the inhibition mechanism, we examined the effect of spermine treatment on the transcription and translation of differentiation-specific genes during differentiation. Addition of spermine at early stages did not inhibit the accumulation of two differentiation-specific mRNAs, ${\alpha}$-tubulin and Class I mRNA, significantly, but rather prevented the rapid degradation of the mRNAs in later overall protein synthesis partially and gradually. However, translation of the ${\alpha}$-tubulin mRNA was completely inhibited. These data suggest that the inhibition of differentiation of N. gruberi by spermine treatment did not result from the inhibition of transcription of differentiation-specific genes but from the specific inhibition of translation of the mRNAs during the differentiation.

  • PDF

Effects of hypoxia on the concentration of circulating miR-210 in serum and the expression of HIF-1α and HSP90α in tissues of olive flounder (Paralichthys olivaceus)

  • Abdellaoui, Najib;Kwak, Jun Soung;Kim, Ki Hong
    • 한국어병학회지
    • /
    • 제33권1호
    • /
    • pp.35-43
    • /
    • 2020
  • Hypoxia is a serious problem in the marine ecosystem causing a decline in aquatic resources. MicroRNAs (miRNAs) regulate the expression of genes through binding to the corresponding sequences of their target mRNAs. Especially, miRNAs in the cytoplasm can be secreted into body fluids, which called circulating miRNAs, and the availability of circulating miRNAs as biomarkers for hypoxia has been demonstrated in mammals. However, there has been no report on the hypoxia-mediated changes in the circulating miRNAs in fish. miR-210 is known as the representative hypoxia-responsive circulating miRNA in mammals. To know whether fish miR-210 also respond to hypoxia, we analyzed the change of circulating miR-210 quantity in the serum of olive flounder (Paralichthys olivaceus) in response to hypoxia. The expression of hypoxia related genes, hypoxia inducible factor 1α (HIF-1α) and the heat shock protein 90α (HSP90α) was also analyzed. Similar to the reports from mammals, miR-210-5p and miR-210-3p were significantly increased in the serum of olive flounder in response to hypoxia, suggesting that circulating miR-210 levels in the serum can be used as a noninvasive prognostic biomarker for fish suffered hypoxia. The target genes of miR-210 were related to various biological processes, which explains the major regulatory role of miR-210 in response to hypoxia. The expression of HIF-1α and HSP90α in the tissues was also up-regulated by hypoxia. Considering the critical role of HIF-1α in miR-210 expression and HSP90 in miRNAs function, the present up-regulation of HIF-1α and HSP90α might be related to the increase of circulatory miR-210, and the interaction mechanism among HIF-1α, HSP90α, and hypoxia-responsive microRNAs in fish should be further studied.

The Role of MicroRNAs in Regulatory T Cells and in the Immune Response

  • Ha, Tai-You
    • IMMUNE NETWORK
    • /
    • 제11권1호
    • /
    • pp.11-41
    • /
    • 2011
  • The discovery of microRNA (miRNA) is one of the major scientific breakthroughs in recent years and has revolutionized current cell biology and medical science. miRNAs are small (19~25nt) noncoding RNA molecules that post-transcriptionally regulate gene expression by targeting the 3' untranslated region (3'UTR) of specific messenger RNAs (mRNAs) for degradation of translation repression. Genetic ablation of the miRNA machinery, as well as loss or degradation of certain individual miRNAs, severely compromises immune development and response, and can lead to immune disorders. Several sophisticated regulatory mechanisms are used to maintain immune homeostasis. Regulatory T (Treg) cells are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases. Recent publications have provided compelling evidence that miRNAs are highly expressed in Treg cells, that the expression of Foxp3 is controlled by miRNAs and that a range of miRNAs are involved in the regulation of immunity. A large number of studies have reported links between alterations of miRNA homeostasis and pathological conditions such as cancer, cardiovascular disease and diabetes, as well as psychiatric and neurological diseases. Although it is still unclear how miRNA controls Treg cell development and function, recent studies certainly indicate that this topic will be the subject of further research. The specific circulating miRNA species may also be useful for the diagnosis, classification, prognosis of diseases and prediction of the therapeutic response. An explosive literature has focussed on the role of miRNA. In this review, I briefly summarize the current studies about the role of miRNAs in Treg cells and in the regulation of the innate and adaptive immune response. I also review the explosive current studies about clinical application of miRNA.

Small RNA Transcriptome of Hibiscus Syriacus Provides Insights into the Potential Influence of microRNAs in Flower Development and Terpene Synthesis

  • Kim, Taewook;Park, June Hyun;Lee, Sang-gil;Kim, Soyoung;Kim, Jihyun;Lee, Jungho;Shin, Chanseok
    • Molecules and Cells
    • /
    • 제40권8호
    • /
    • pp.587-597
    • /
    • 2017
  • MicroRNAs (miRNAs) are essential small RNA molecules that regulate the expression of target mRNAs in plants and animals. Here, we aimed to identify miRNAs and their putative targets in Hibiscus syriacus, the national flower of South Korea. We employed high-throughput sequencing of small RNAs obtained from four different tissues (i.e., leaf, root, flower, and ovary) and identified 33 conserved and 30 novel miRNA families, many of which showed differential tissuespecific expressions. In addition, we computationally predicted novel targets of miRNAs and validated some of them using 5' rapid amplification of cDNA ends analysis. One of the validated novel targets of miR477 was a terpene synthase, the primary gene involved in the formation of disease-resistant terpene metabolites such as sterols and phytoalexins. In addition, a predicted target of conserved miRNAs, miR396, is SHORT VEGETATIVE PHASE, which is involved in flower initiation and is duplicated in H. syriacus. Collectively, this study provides the first reliable draft of the H. syriacus miRNA transcriptome that should constitute a basis for understanding the biological roles of miRNAs in H. syriacus.

Differential Expression Profiling of Salivary Exosomal microRNAs in a Single Case of Periodontitis - A Pilot Study

  • Park, Sung Nam;Son, Young Woo;Choi, Eun Joo;You, Hyung-Keun;Kim, Min Seuk
    • International Journal of Oral Biology
    • /
    • 제43권4호
    • /
    • pp.223-230
    • /
    • 2018
  • Exosomes are Nano-sized lipid vesicles secreted from mammalian cells containing diverse cellular materials such as proteins, lipids, and nucleotides. Multiple lines of evidence indicate that in saliva, exosomes and their contents such as microRNAs (miRNAs) mediate numerous cellular responses upon delivery to recipient cells. The objective of this study was to characterize the different expression profile of exosomal miRNAs in saliva samples, periodically isolated from a single periodontitis patient. Unstimulated saliva was collected from a single patient over time periods for managing periodontitis. MicroRNAs extracted from each phase were investigated for the expression of exosomal miRNAs. Salivary exosomal miRNAs were analyzed using Affymetrix miRNA arrays and prediction of target genes and pathways for its different expression performed using DIANA-mirPath, a web-based, computational tool. Following the delivery of miRNA mimics (hsa-miR-4487, -4532, and -7108-5p) into human gingival fibroblasts, the expression of pro-inflammatory cytokines and activation of the MAPK pathway were evaluated through RT-PCR and western blotting. In each phase, 13 and 43 miRNAs were found to be differently expressed $({\mid}FC{\mid}{\geq}2)$. Among these, hsa-miR-4487 $({\mid}FC{\mid}=9.292005)$ and has-miR-4532 $({\mid}FC{\mid}=18.322697)$ were highly up-regulated in the clinically severe phase, whereas hsa-miR-7108-5p $({\mid}FC{\mid}=12.20601)$ was strongly up-regulated in the clinically mild phase. In addition, the overexpression of miRNA mimics in human gingival fibroblasts resulted in a significant induction of IL-6 mRNA expression and p38 phosphorylation. The findings of this study established alterations in salivary exosomal miRNAs which are dependent on the severity of periodontitis and may act as potential candidates for the treatment of oral inflammatory diseases.

족삼리 양릉천 전침 자극 후 흰쥐 통증 모델에서 microRNA의 차등 발현 (Differential Expression of microRNAs Following Electroacupuncture Applied to ST36 and GB34 in Rat Models of Chronic Pain)

  • 김소희;비슈누몰라칼라 신드후리;구성태
    • Korean Journal of Acupuncture
    • /
    • 제39권4호
    • /
    • pp.132-141
    • /
    • 2022
  • Objectives : Some acupoints are commonly utilized to treat a variety of diseases. The acupoints appear to have a wide range of effects caused by several mechanisms. The purpose of this study is to investigate into the potential role of microRNAs (miRNAs) in the multipotent effects of individual acupoint stimulation. Methods : We examined the miRNA expressions in the dorsal root ganglia (DRG) of neuropathic or inflammatory pain rats following ST36 and GB34 electroacupuncture (EA) stimulation. Neuropathic pain was induced by L5 spinal nerve ligation. Inflammatory pain was induced by knee joint injection of Complete Freund's adjuvant (CFA). EA was given under gaseous anesthesia with the same parameters (1mA, 2Hz, 30 min) in 5 consecutive days. Pain behaviors and miRNA expressions were analyzed. Results : In rats with neuropathic and inflammatory pain, EA treatments significantly enhanced the paw withdrawal threshold and weight-bearing force. After nerve injury, 36 miRNAs were upregulated in the DRG of neuropathic rats, while EA downregulated 10 of them. Furthermore, 14 miRNAs were downregulated following nerve damage, while one was increased by EA. 15 miRNAs were increased in the DRG of inflammatory rats following CFA injection, while 5 were downregulated by EA. Furthermore, 17 miRNAs were downregulated following CFA injection, while 7 were increased by EA. The miRNAs rno-miR-335, rno-miR-381-5p, rno-miR-1306-3p, and rno-miR-1839-3p were regulated by EA in both models. Conclusions : In two pain models, EA applied to ST36 and GB34 regulated miRNA expression differently. There appeared to be both acupoint-specific and non-specific miRNAs, and miRNA regulation of differential protein expression may modulate a variety of EA mechanisms.

Chimeric RNAs as potential biomarkers for tumor diagnosis

  • Zhou, Jianhua;Liao, Joshua;Zheng, Xuexiu;Shen, Haihong
    • BMB Reports
    • /
    • 제45권3호
    • /
    • pp.133-140
    • /
    • 2012
  • Cancers claim millions of lives each year. Early detection that can enable a higher chance of cure is of paramount importance to cancer patients. However, diagnostic tools for many forms of tumors have been lacking. Over the last few years, studies of chimeric RNAs as biomarkers have emerged. Numerous reports using bioinformatics and screening methodologies have described more than 30,000 expressed sequence tags (EST) or cDNA sequences as putative chimeric RNAs. While cancer cells have been well known to contain fusion genes derived from chromosomal translocations, rearrangements or deletions, recent studies suggest that trans-splicing in cells may be another source of chimeric RNA production. Unlike cis-splicing, trans-splicing takes place between two pre-mRNA molecules, which are in most cases derived from two different genes, generating a chimeric non-co-linear RNA. It is possible that trans-splicing occurs in normal cells at high frequencies but the resulting chimeric RNAs exist only at low levels. However the levels of certain RNA chimeras may be elevated in cancers, leading to the formation of fusion genes. In light of the fact that chimeric RNAs have been shown to be overrepresented in various tumors, studies of the mechanisms that produce chimeric RNAs and identification of signature RNA chimeras as biomarkers present an opportunity for the development of diagnoses for early tumor detection.

Use of cutting-edge RNA-sequencing technology to identify biomarkers and potential therapeutic targets in canine and feline cancers and other diseases

  • Youngdong Choi;Min-Woo Nam;Hong Kyu Lee;Kyung-Chul Choi
    • Journal of Veterinary Science
    • /
    • 제24권5호
    • /
    • pp.71.1-71.12
    • /
    • 2023
  • With the growing interest in companion animals and the rapidly expanding animal healthcare and pharmaceuticals market worldwide. With the advancements in RNAsequencing (RNA-seq) technology, it has become a valuable tool for understanding biological processes in companion animals and has multiple applications in animal healthcare. Historically, veterinary diagnoses and treatments relied solely on clinical symptoms and drugs used in human diseases. However, RNA-seq has emerged as an effective technology for studying companion animals, providing insights into their genetic information. The sequencing technology has revealed that not only messenger RNAs (mRNAs) but also noncoding RNAs (ncRNAs) such as long ncRNAs and microRNAs can serve as biomarkers. Based on the examination of RNA-seq applications in veterinary medicine, particularly in dogs and cats, this review concludes that RNA-seq has significant potential as a diagnostic and research tool. It has enabled the identification of potential biomarkers for cancer and other diseases in companion animals. Further research and development are required to maximize the utilization of RNA-seq for improved disease diagnosis and therapeutic targeting in companion animals.