Browse > Article
http://dx.doi.org/10.14406/acu.2022.028

Differential Expression of microRNAs Following Electroacupuncture Applied to ST36 and GB34 in Rat Models of Chronic Pain  

So-Hee, Kim (Korean Medicine Research Center for Healthy Aging, Pusan National University)
Vishnumolakala, Sindhuri (Department of Korean Medical Science, School of Korean Medicine, Pusan National University)
Sungtae, Koo (Department of Korean Medical Science, School of Korean Medicine, Pusan National University)
Publication Information
Korean Journal of Acupuncture / v.39, no.4, 2022 , pp. 132-141 More about this Journal
Abstract
Objectives : Some acupoints are commonly utilized to treat a variety of diseases. The acupoints appear to have a wide range of effects caused by several mechanisms. The purpose of this study is to investigate into the potential role of microRNAs (miRNAs) in the multipotent effects of individual acupoint stimulation. Methods : We examined the miRNA expressions in the dorsal root ganglia (DRG) of neuropathic or inflammatory pain rats following ST36 and GB34 electroacupuncture (EA) stimulation. Neuropathic pain was induced by L5 spinal nerve ligation. Inflammatory pain was induced by knee joint injection of Complete Freund's adjuvant (CFA). EA was given under gaseous anesthesia with the same parameters (1mA, 2Hz, 30 min) in 5 consecutive days. Pain behaviors and miRNA expressions were analyzed. Results : In rats with neuropathic and inflammatory pain, EA treatments significantly enhanced the paw withdrawal threshold and weight-bearing force. After nerve injury, 36 miRNAs were upregulated in the DRG of neuropathic rats, while EA downregulated 10 of them. Furthermore, 14 miRNAs were downregulated following nerve damage, while one was increased by EA. 15 miRNAs were increased in the DRG of inflammatory rats following CFA injection, while 5 were downregulated by EA. Furthermore, 17 miRNAs were downregulated following CFA injection, while 7 were increased by EA. The miRNAs rno-miR-335, rno-miR-381-5p, rno-miR-1306-3p, and rno-miR-1839-3p were regulated by EA in both models. Conclusions : In two pain models, EA applied to ST36 and GB34 regulated miRNA expression differently. There appeared to be both acupoint-specific and non-specific miRNAs, and miRNA regulation of differential protein expression may modulate a variety of EA mechanisms.
Keywords
acupuncture; analgesic effect; neuropathic pain; inflammatory pain;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Scharf HP, Mansmann U, Streitberger K, Witte S, Kramer J, Maier C, et al. Acupuncture and knee osteoarthritis: a three-armed randomized trial. Ann Intern Med. 2006 ; 145(1) : 12-20. https://doi.org/10.7326/0003-4819-145-1-200607040-00005   DOI
2 Oh JE, Kim SN. Anti-inflammatory effects of acupuncture at ST36 point: a literature review in animal studies. Front Immunol. 2021 ; 12 : 813748. https://doi.org/10.3389/fimmu.2021.813748   DOI
3 Li L, Zhu W, Lin G, Chen C, Tang D, Lin S, et al. Effects of acupuncture in ischemic stroke rehabilitation: a randomized controlled trial. Front Neurol. 2022 ; 13 : 897078. https://doi.org/10.3389/fneur.2022.897078   DOI
4 Meridians and Acupoints Compilation Committee of Korean Medical Colleges. Acupuncture points. Seoul: Jungdam Publishing. 2020 : 245-251.
5 Meridians and Acupoints Compilation Committee of Korean Medical Colleges. Acupuncture points. Seoul: Jungdam Publishing. 2020 : 346-360.
6 Wang Z, Yi T, Long M, Gao Y, Cao C, Huang C, et al. Electro-acupuncture at Zusanli Acupoint (ST36) suppresses inflammation in allergic contact dermatitis via triggering local IL-10 production and inhibiting p38 MAPK activation. Inflammation. 2017 ; 40(4) : 1351-64. https://doi.org/10.1007/s10753-017-0578-5   DOI
7 Zhao YX, Yao MJ, Liu Q, Xin JJ, Gao JH, Yu XC. Electroacupuncture treatment attenuates paclitaxel-induced neuropathic pain in rats via inhibiting spinal glia and the TLR4/NF-κB pathway. J Pain Res. 2020 ; 13 : 239-50. https://doi.org/10.2147/JPR.S241101   DOI
8 Chen Y, Cheng J, Zhang Y, Chen JDZ, Seralu FM. Electroacupuncture at ST36 relieves visceral hypersensitivity via the NGF/TrkA/TRPV1 peripheral afferent pathway in a rodent model of post-inflammation rectal hypersensitivity. J Inflamm Res. 2021 ; 14 : 325-39. https://doi.org/10.2147/JIR.S285146   DOI
9 Li Y, Fang Z, Gu N, Bai F, Ma Y, Dong H, et al. Inhibition of chemokine CX3CL1 in spinal cord mediates the electroacupunctureinduced suppression of inflammatory pain. J Pain Res. 2019 ; 12 : 2663-72. https://doi.org/10.2147/JPR.S205987   DOI
10 Zhao P, Chen X, Han X, Wang Y, Shi Y, Ji J, et al. Involvement of microRNA-155 in the mechanism of electroacupuncture treatment effects on experimental autoimmune encephalomyelitis. Int Immunopharmacol. 2021 ; 97: 107811. https://doi.org/10.1016/j.intimp.2021.107811   DOI
11 Jiang M, Chen X, Zhang L, Liu W, Yu X, Wang Z, et al. Electroacupuncture suppresses glucose metabolism and GLUT-3 expression in medial prefrontal cortical in rats with neuropathic pain. Biol Res. 2021 ; 54(1) : 24. https://doi.org/10.1186/s40659-021-00348-0   DOI
12 Jang JH, Yeom MJ, Ahn S, Oh JY, Ji S, Kim TH, et al. Acupuncture inhibits neuroinflammation and gut microbial dysbiosis in a mouse model of Parkinson's disease. Brain Behav Immun. 2020 ; 89 : 641-55. https://doi.org/10.1016/j.bbi.2020.08.015   DOI
13 Xie LL, Zhao YL, Yang J, Cheng H, Zhong ZD, Liu YR, et al. Electroacupuncture prevents osteoarthritis of high-fat diet-induced obese rats. Biomed Res Int. 2020 ; 2020 : 9380965. https://doi.org/10.1155/2020/9380965   DOI
14 Yeo S, Song J, Lim S. Acupuncture Inhibits the Increase in Alpha-synuclein in substantia nigra in an MPTP- induced parkinsonism mouse model. Adv Exp Med Biol. 2020 ; 1232 : 401-8. https://doi.org/10.1007/978-3-030-34461-0_51   DOI
15 Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004 ; 116(2) : 281-97. https://doi.org/10.1016/S0092-8674(04)00045-5   DOI
16 Zhao J, Lee MC, Momin A, Cendan CM, Shepherd ST, Baker MD, et al. Small RNAs control sodium channel expression, nociceptor excitability, and pain thresholds. J Neurosci. 2010 ; 30(32) : 10860-71. https://doi.org/10.1523/JNEUROSCI.1980-10.2010   DOI
17 Bai G, Ambalavanar R, Wei D, Dessem D. Downregulation of selective microRNAs in trigeminal ganglion neurons following inflammatory muscle pain. Mol Pain. 2007 ; 3 : 15. https://doi.org/10.1186/1744-8069-3-15   DOI
18 Koo ST, Kim SK, Kim EH, Kim JH, Youn DH, Lee BH, et al. Acupuncture point locations for experimental animal studies in rats and mice. Korean J Acupunct. 2010 ; 27(3) : 67-78.
19 Kusuda R, Cadetti F, Ravanelli MI, Sousa TA, Zanon S, De Lucca FL, et al. Differential expression of microRNAs in mouse pain models. Mol Pain. 2011 ; 7 : 17. https://doi.org/10.1186/1744-8069-7-17   DOI
20 Chung JM, Kim HK, Chung K. Segmental spinal nerve ligation model of neuropathic pain. Methods Mol Med. 2004 ; 99 : 35-45. https://doi.org/10.1385/1-59259-770-X:035   DOI
21 Peter ME. Targeting of mRNAs by multiple miRNAs: the next step. Oncogene. 2010 ; 29(15) : 2161-4. https://doi.org/10.1038/onc.2010.59   DOI
22 Siegel G, Saba R, Schratt G. microRNAs in neurons: manifold regulatory roles at the synapse. Curr Opin Genet Dev. 2011 ; 21(4) : 491-7. https://doi.org/10.1016/j.gde.2011.04.008   DOI
23 Aldrich BT, Frakes EP, Kasuya J, Hammond DL, Kitamoto T. Changes in expression of sensory organ-specific microRNAs in rat dorsal root ganglia in association with mechanical hypersensitivity induced by spinal nerve ligation. Neuroscience. 2009 ; 164 (2): 711-23. https://doi.org/10.1016/j.neuroscience.2009.08.033   DOI
24 Sun K, Zhang J, Yang Q, Zhu J, Zhang X, Wu K, et al. MiR-10b-3p alleviates cerebral ischemia/reperfusion injury by targeting Kruppel-like factor 5 (KLF5). Pflugers Arch. 2022 ; 474(3) : 343-53. https://doi.org/10.1007/s00424-021-02645-9   DOI
25 Zheng T, Li Y, Zhang X, Xu J, Luo M. Exosomes derived from miR-212-5p overexpressed human synovial mesenchymal stem cells suppress chondrocyte degeneration and inflammation by targeting ELF3. Front Bioeng Biotechnol. 2022 ; 10 : 816209. https://doi.org/10.3389/fbioe.2022.816209   DOI
26 Lu X, Li Y, Chen H, Pan Y, Lin R, Chen S. miR-335-5P contributes to human osteoarthritis by targeting HBP1. Exp Ther Med. 2021 ; 21(2) : 109. https://doi.org/10.3892/etm.2020.9541   DOI
27 Sun L, Lu S, Bai M, Xiang L, Li J, Jia C, et al. Integrative microRNA-mRNA analysis of muscle tissues in qianhua mutton merino and small tail han sheep reveals key roles for oar-miR655-3p and oar-miR-381-5p. DNA Cell Biol. 2019 ; 38(5) : 423-35. https://doi.org/10.1089/dna.2018.4408   DOI
28 Liu B, Zheng W, Dai L, Fu S, Shi E. Bone marrow mesenchymal stem cell derived exosomal miR-455-5p protects against spinal cord ischemia reperfusion injury. Tissue Cell. 2022 ; 74 : 101678. https://doi.org/10.1016/j.tice.2021.101678   DOI
29 Zhou M, Gao Y, Wang M, Guo X, Li X, Zhu F, et al. MiR-146b-3p regulates proliferation of pancreatic cancer cells with stem cell-like properties by targeting MAP3K10. J Cancer. 2021 ; 12(12) : 3726-40. https://doi.org/10.7150/jca.48418   DOI
30 Tornero-Esteban P, Rodriguez-Rodriguez L, Abasolo L, Tome M, Lopez-Romero P, Herranz E, et al. Signature of microRNA expression during osteogenic differentiation of bone marrow MSCs reveals a putative role of miR-335-5p in osteoarthritis. BMC Musculoskelet Disord. 2015 ; 16 : 182. https://doi.org/10.1186/s12891-015-0652-9   DOI
31 Lin TB, Lai CY, Hsieh MC, Jiang JL, Cheng JK, Chau YP, et al. Neuropathic allodynia involves spinal Neurexin-1β-dependent Neuroligin-1/Postsynaptic Density-95/NR2B cascade in rats. Anesthesiology. 2015 ; 123(4) : 909-26. https://doi.org/10.1097/ALN.0000000000000809   DOI
32 Nong W, Bao C, Chen Y, Wei Z. miR-212-3p attenuates neuroinflammation of rats with Alzheimer's disease via regulating the SP1/BACE1/NLRP3/Caspase-1 signaling pathway. Bosn J Basic Med Sci. 2022 ; 22(4) : 540-52. https://doi.org/10.17305/bjbms.2021.6723   DOI
33 Huang B, Guo S, Zhang Y, Lin P, Lin C, Chen M, et al. MiR-223-3p alleviates trigeminal neuropathic pain in the male mouse by targeting MKNK2 and MAPK/ERK signaling. Brain Behav. 2022 ; 12(7) : e2634. https://doi.org/10.1002/brb3.2634   DOI
34 Lv Z, Ye S, Wang Z, Xin P, Chen Y, Tan Z, et al. Long non-coding RNA TSPEAR antisense RNA 2 is downregulated in rheumatoid arthritis and inhibits the apoptosis of fibroblast-like synoviocytes by downregulating microRNA-212-3p (miR-212-3p). Bioengineered. 2022 ; 13(2) : 4166-72. https://doi.org/10.1080/21655979.2021.2021347   DOI
35 Meng J, Ding T, Chen Y, Long T, Xu Q, Lian W, et al. LncRNA-Meg3 promotes Nlrp3-mediated microglial inflammation by targeting miR-7a-5p. Int Immunopharmacol. 2021; 90: 107141. https://doi.org/10.1016/j.intimp.2020.107141   DOI
36 Dai Q, Sun J, Dai T, Xu Q, Ding Y. miR-29c-5p knockdown reduces inflammation and blood-brain barrier disruption by upregulating LRP6. Open Med (Wars). 2022 ; 17(1) : 353-64. https://doi.org/10.1515/med-2022-0438   DOI
37 Jian S, Luo D, Wang Y, Xu W, Zhang H, Zhang L, et al. MiR-337-3p confers protective effect on facet joint osteoarthritis by targeting SKP2 to inhibit DUSP1 ubiquitination and inactivate MAPK pathway. Cell Biol Toxicol. 2021. https://doi.org/10.1007/s10565-021-09665-2   DOI
38 Li X, Lou X, Xu S, Du J, Wu J. Hypoxia inducible factor-1 (HIF-1α) reduced inflammation in spinal cord injury via miR-380-3p/NLRP3 by Circ 0001723. Biol Res. 2020 ; 53(1) : 35. https://doi.org/10.1186/s40659-020-00302-6    DOI