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ABSTRACT

With the growing interest in companion animals and the rapidly expanding animal 
healthcare and pharmaceuticals market worldwide. With the advancements in RNA-
sequencing (RNA-seq) technology, it has become a valuable tool for understanding biological 
processes in companion animals and has multiple applications in animal healthcare. 
Historically, veterinary diagnoses and treatments relied solely on clinical symptoms and 
drugs used in human diseases. However, RNA-seq has emerged as an effective technology 
for studying companion animals, providing insights into their genetic information. The 
sequencing technology has revealed that not only messenger RNAs (mRNAs) but also non-
coding RNAs (ncRNAs) such as long ncRNAs and microRNAs can serve as biomarkers. Based 
on the examination of RNA-seq applications in veterinary medicine, particularly in dogs 
and cats, this review concludes that RNA-seq has significant potential as a diagnostic and 
research tool. It has enabled the identification of potential biomarkers for cancer and other 
diseases in companion animals. Further research and development are required to maximize 
the utilization of RNA-seq for improved disease diagnosis and therapeutic targeting in 
companion animals.
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INTRODUCTION

Understanding the transcriptomes produced by genomes is important for interpreting the 
fundamental biological processes in different organisms [1]. Transcriptomic changes imply 
the activation of specific pathways in response to environmental stress, which helps identify 
complex bionetworks in different cell types. Since the RNA-sequencing (RNA-seq) technique 
was first used in 2005, analyzing transcriptomes has become more comprehensive and 
extensive [1]. RNA-seq is a powerful tool, with significant advantages compared to traditional 
technologies with higher sensitivity, accurate unbiased quantification of massive expression 
profiles of genes, and a wider dynamic range [2]. Most cancer-related drug research 
has focused on protein-coding genes which represent only 3% of the human genome. 
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However, RNA-seq can identify differently expressed transcriptomes, splice variants, and 
non-coding RNAs (ncRNAs), which have long been known as untranslated genes and have 
not been well understood until recently [3]. The ncRNAs are largely categorized based on 
their characteristics into short regulatory ncRNAs and long ncRNAs [4]. The classes of 
short regulatory ncRNAs include microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), 
and small interfering RNAs (siRNAs) [5-7], while long ncRNAs include linear long non-
coding RNAs (linear lncRNAs) and circular RNAs (circRNAs) (Fig. 1) [8]. However, with the 
development of computational data analysis techniques, the role of ncRNAs has been further 
elucidated [9]. The discovery of the functions of ncRNAs has provided a better understanding 
of cancer genetics and epigenetics, and the ncRNAs have the potential to serve as predictors 
of anticancer drug sensitivity, going beyond the limitations of protein-coding genes [10,11].

With the rising interest in companion animals in recent decades, various animal cancers 
and diseases have been trying to be elucidated via RNA-seq (Fig. 2). RNA-seq is a promising 
tool in animal research that can be used to discover a wide range of biological responses, 
including cancer research, epigenetic regulation, tissue-specific gene expression patterns at 
molecular level. Studying animal cancers and diseases can be very useful in understanding 
human diseases. Animals and humans share many common genes and physiological 
functions related to disease occurrence in both species. Moreover, animal research is faster 
and more cost-effective than human research [12,13].

This review provides a comprehensive view of RNA-seq studies in both dogs and cats, 
specifically focusing on identifying potential therapeutic targets of cancers and diseases. 
Additionally, our review incorporates the latest advancements in veterinary medicine and 
makes it a valuable resource for researchers in harnessing the potential of RNA-seq for 
disease diagnosis in companion animals.
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Fig. 1. Classification of RNA lineage. The proposed classification of RNA is shown. RNA is largely categorized into two classes: mRNAs and ncRNAs. In ncRNAs, 
regulatory ncRNAs are composed of long ncRNAs and short ncRNAs. Long ncRNAs include linear lncRNAs and circRNAs while the short ncRNAs include piRNAs, 
siRNAs, and miRNAs. 
mRNAs, messenger RNAs; ncRNAs, non-coding RNAs; linear lncRNAs, linear long non-coding RNAs; circRNAs, circular RNAs; piRNAs, piwi-interacting RNAs; 
siRNAs, small interfering RNAs; miRNAs, microRNAs.
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RESEARCH OF CANCER VIA RNA-seq

RNA-seq has been applied to investigate the pathogenesis of cancers, identify cancer-related 
pathways, characterize cancer progression, and identify biomarker candidate genes in dogs 
and cats [14,15]. This high-end technique is also used to analyze the effects of anti-cancer 
drugs in animals [16].

Most RNA sequences originate from protein-coding genes, wherein the information in 
DNA is transferred to a messenger RNA (mRNA) molecule by transcription. The mRNAs 
are exported to the cytosol and translated into proteins [17]. The analysis of protein-coding 
genes can be performed by whole transcriptome sequencing, which provides an overview of 
the complete gene expression landscape [18].

Previous studies have shown that the analysis of the comprehensive transcriptomic 
characterization of the canine prostate cancer cell line revealed distinct expression patterns 
between the primary epithelial cancer cells and metastatic tumors [19].

Prostate cancer
Prostate cancer cell lines exhibiting a mesenchymal marker, vimentin (VIM), and low 
expression of epithelial markers such as cytokeratin 8 and 18 demonstrated invasive 
characteristics. Each prostate cancer cell line also featured a unique individual expression of 
the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, which is 
frequently targeted for cancer treatment [20].

In prostate cancer, the upregulation of five miRNAs and the downregulation of 14 miRNAs 
were associated with distant metastasis [21]. Specifically, two miRNAs (miR-95 and miR-18a) 
were overexpressed and induced cancer progression and malignant transformation [22].

Urothelial carcinoma
Other RNA-seq studies sought to understand the progression of canine invasive urothelial 
carcinoma (iUC). Recent findings have shown that 2,531 genes were differentially expressed 
in canine iUC [23]. Of those, tumor protein 53 (TP53) which is known as a tumor-suppressor 
gene involved in cell cycle arrest and the apoptosis pathway was downregulated in canine 
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Fig. 2. Application of RNA-seq in companion animals. RNA-seq applied to cancer research includes the 
investigation of prostate cancer, lung cancer, melanoma, osteosarcoma, lymphoma, and glioblastoma. Infectious 
diseases, joint diseases, autoimmune diseases, and cardiac diseases have also been investigated. 
RNA-seq, RNA-sequencing.



iUC [24], whereas erythroblastic oncogene B 2 (ERBB2) was upregulated [25]. Interestingly, 
the investigation of differentially expressed genes (DEGs) in canine iUC has revealed 
several mutated genes [26]. A mutation of the fibroblast growth factor receptor 3 (FGFR3) 
oncogene was found to be present in non-invasive canine UC [26]. Another study has shown 
an increased expression of programmed death-ligand 1 (PD-L1) in canine UC. The gene 
governs different pathways linked to the inflamed tumor microenvironment. Blocking the 
programmed cell death protein 1/PD-L1 immune checkpoint reduces immunosuppressive 
signals found within the tumor microenvironment in canine bladder cancer [27].

Melanoma
Canine melanoma is a malignant cancer with a poor prognosis in dogs [28]. Downregulation 
of mitogen-activated protein kinase (MAPK) and the PI3K/AKT pathways leads to the 
progression of melanomas [29]. Recently, the MAPK and PI3K/AKT pathways have been 
targeted with mitogen-activated protein kinase 1/2 (MEK1/2) inhibitors which exhibited 
significant inhibition of tumor growth in canine melanomas [29]. Another study explored 
the differential expression of a number of genes in melanomas. A developing melanoma 
actively promotes collagen metabolism and extracellular matrix (ECM) remodeling as well as 
enhances cell proliferation, leading to metastasis through the action of multiple genes [30]. 
The results demonstrated that the nitric oxide synthase 2 (NOS2) gene, known to induce the 
metastatic ability of canine melanoma, was upregulated [30,31].

Several studies have shown that cancer pathogenesis and ncRNAs are closely related in canine 
oral melanoma. MiR-450b was found to be overexpressed in canine melanoma metastatic 
cells [32]. The upregulation of miR-450b induces the increase of matrix metalloproteinase-9 
(MMP9) expression which is required for tumor metastasis. Also, miR-450b suppresses 
the expression of bone morphogenetic protein-4 (BMP4), which is known to decrease the 
activation of MMP9 [33].

Osteosarcoma
The intratumoral heterogeneity of canine osteosarcoma (OSA), a malignant and metastatic 
neoplasm was investigated to unravel the pathogenesis with transcriptomic expression 
patterns [34]. Fifteen pathways that had not been identified earlier, were confirmed to be 
related to the promotion of metastasis by using single-cell RNA sequencing (scRNA-seq) 
[35]. The scRNA-seq is used to examine the information on the sequence of individual 
cells and characterize the cells from early developmental stages to provide the differences 
in cellular properties and functions of a single abnormal tumor cell in comparison to a 
normal one [36]. The interest in understanding single-cell heterogeneity has increased. 
This assessment of different gene expressions between individual cells has provided the 
possibility of identifying rare cell populations that cannot be detected from a bulk RNA-seq 
[37]. In canine OSA, the expression of miR-9 was upregulated, and high miR-9 expression 
was associated with shorter survival compared to a low miR-9 expression [38]. The activation 
of miR-9 was partly mediated by the upregulation of gelsolin and the miRNA involved in its 
expression, which contributes to the malignant behavior of canine OSA [39].

These findings contribute to a better understanding of the expression landscape of animal 
cancers. Therefore, it is necessary to accumulate sequencing data and continue to perform 
genomic comparisons to identify novel targets. Discovering potential therapeutic candidates 
is the key to anti-cancer drug development and personalized medicine in the future.
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Mammary tumors
Mammary tumors have been introduced as one of the major solid tumors in canine, and 
the studies of canine mammary tumors (CMTs) were also performed with whole genome 
sequencing [40]. In some studies of CMTs, PIK3CA mutations have been identified as key 
mutations in CMTs [40,41]. The mutations of PIK3CA have been introduced as cancer driver 
genes [42]. On the other hand, hundreds of circulating miRNAs have been identified from 
the studies on canine mammary tumors [43]. Also, the expressions of miR-29b and miR-19b 
were upregulated in malignant mammary tumors. It has been suggested that the evaluation 
of several miRNAs is needed to understand the pathology of canine mammary cancers [44].

Lymphoma
One of the common hematopoietic tumors in canines has been characterized by the 
expressions of miRNAs in the lymph nodes and plasma. The expressions of miR-155 and 
miR-21 were decreased in the lymph nodes of canines with T-cell lymphoma and miR-155 was 
overexpressed in B-cell lymphomagenesis [45]. Therefore, miR-21 and miR-155 have been 
targeted using antisense oligonucleotides to treat specific veterinary cancers [46]. Among the 
two miRNAs, miR-21 has been introduced as a target to induce the upregulation of phosphate 
and tensin homologue (PTEN) which is related to apoptosis [47].

Glioblastoma
In addition, increasing efforts are being made to discover and characterize feline miRNAs. 
The characterization of feline miRNAs has revealed that 88 miRNAs were specifically 
expressed in the brain tissue, and the role of miR-219 has been confirmed in the proliferation 
and migration of glioma cells [48]. MiR-124 was introduced to inhibit the proliferation 
of glioblastoma and activate the differentiation of brain cancer stem cells [49]. Also, the 
expression of miR-192 increased in all feline carcinomas and some B-cell lymphomas. 
Thus, the study of cancers of companion animals using RNA-seq can provide data on gene 
expressions. The analysis of these complex data sets will assist in a better understanding of 
tumor etiology and mechanisms [50].

RESEARCH OF OTHER DISEASES VIA RNA-seq

Given the vast presence of companion animals, veterinary research using RNA-seq is a 
significant way to comprehensively understand animal diseases and identify candidate 
biomarkers for diagnosis.

Infectious disease
Coronaviruses are zoonotic and can infect different vertebrates causing respiratory 
symptoms [51]. The canine respiratory coronavirus was first revealed in dogs with canine 
infectious respiratory diseases (CIRDs), and its characteristics are still being examined [52]. 
Some studies have revealed the epidemiology and genetic variation of canine respiratory 
coronavirus in Swedish dogs [53]. The study revealed the diversity of coronaviruses in dogs 
which can lead to determining the genetic variations and help clarify the clinical features of 
canine coronaviruses [53]. Another study has shown that the canine respiratory coronavirus 
utilizes the transmembrane protease serine 2 (TMPRSS2) to activate the coronavirus receptor 
for entry. This is similar to the features of the middle east respiratory syndrome coronavirus 
(MERS-CoV) [54].
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Among the other infectious diseases in canines, the pulmonary immune responses caused 
by canine distemper virus infection in dogs have been investigated. The expressions of 
interferon-related genes were increased, leading to activation of the interferon 1 (IFN-1) 
pathways which are critical contributors to immune response [55]. Another infectious disease 
in dogs is the H5N1 virus infection, a severe lung disease, and the associated genes are 
known to be highly mutated [56,57]. H5N1 infection in dogs causes differential expressions 
of cell surface receptors (CD59) and protein-coding genes (RIB43A domain with coiled-coils 
2 [RIBC2] and coiled-coil domain containing 33 [CCDC33]) [58].

Feline infectious peritonitis has been investigated to understand the feline coronavirus and 
458 DEGs were seen to be related to the biology of coronavirus. Specifically, the expression of 
angiotensin-converting enzyme 2 (ACE2), which is known as the coronavirus receptor, was 
detected [59,60]. The studies on infectious diseases in cats also include the analysis of feline 
calicivirus (FCV), which is a common viral pathogen in cats and causes respiratory tract disease 
[61,62]. RNA-seq studies have revealed that the junctional adhesion molecule-1 gene, which is a 
cellular binding molecule of the FCV, was not expressed in FCV-infected cats [63,64].

Joint disease
An analysis of canine osteoarthritis (OA) showed that miR-542 and miR-543 were upregulated 
[65]. The upregulation of the two miRNAs was found in the synovial tissue of canine OA 
joints and was also involved in the inflammatory response [65]. As miRNAs in the synovial 
fluid have been known to be stable, the increased expression of the two may be indicative of 
canine OA [66].

Autoimmune disease
Canine histiocytic proliferative disorders are mostly found in dendritic cells [67]. 
Histiocytosis (HS) is an inflammatory disease that contributes to immune dysregulation [68]. 
Several pathways, such as the MAPK signaling pathway, are activated in canine histiocytic 
diseases [69]. It has also been confirmed that tyrosine-protein phosphatase non-receptor 
type 11 (PTPN11) mutations which are related to the dissemination of histiocytic sarcoma, 
play a key role in canine HS [70]. Furthermore, studies targeting MAPK signaling in canine 
HS have led to the development of the therapeutic drug Palbociclib [71,72].

Cardiac disease
Novel pathways and mechanisms in dogs with dilated cardiomyopathy (DCM) have also been 
researched, revealing that 86 genes involved in energy metabolism and cardiac function are 
differentially expressed in dogs with DCM. In particular, the expression of the natriuretic 
peptide B gene, found in dogs with late-stage heart disease, was increased [73].

DISCUSSION

High throughput sequencing technologies broaden the boundaries of molecular and cellular 
dynamics. As with other fields of biology, veterinary medicine has effectively embraced 
sequencing technologies that are used in human health. Advanced RNA-seq technologies 
such as scRNA-seq result from the technological integration of genomics, transcriptomics, 
proteomics, and computer sciences. These have made it possible to observe the individual 
landscape of each cell in a malignant tumor or diseased tissue [74].
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As interest in companion animals increases, their diseases and cancers are also being 
extensively studied. A few decades ago, the diagnosis of veterinary diseases was only by 
judgments based on clinical symptoms and in vitro tests. Such processes have a significant 
drawback in that it takes time to diagnose the disease. When highly infectious diseases 
spread to livestock, it leads to considerable economic losses. To address these concerns 
and economic issues, the transcriptome analysis of mRNA and ncRNA has been adapted 
to diagnose veterinary diseases rapidly. Furthermore, the technique has also been used to 
identify targeted therapeutic biomarkers [75].

Despite remarkable advances in the RNA-seq technique, it still has some fundamental 
limitations. One of the biggest challenges is the selection of the appropriate biomarkers 
from a large number of differentially expressed genes, which could save expenses and time. 
Most of the biomarkers identified have not yet been developed into practical diagnostic kits. 
Large sample sizes and trials under various conditions are required to commercialize these 
products, and ongoing funding is essential to ensure that selected candidates have real 
clinical value.

Taken together, the application of RNA-seq in companion animal research is developing 
rapidly with the identification of many biomarkers (Table 1), such as mRNAs and ncRNAs, 
which are potent regulators of diverse oncogenic pathways in veterinary medicine.
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Table 1. Coding genes and non-coding genes as biomarkers
Diagnosis Biomarkers References
Canine

Cancer
Prostate cancer VIM, cytokeratin 8, cytokeratin 18, miR-95, miR-18a [20, 22]
Urothelial carcinoma TP53, ERBB2, FGFR3, PD-L1 [24, 25, 26]
Melanoma MEK1, MEK2, NOS2, miR-450b [33, 76, 77]
Osteosarcoma miR-9 [39, 78]
Mammary tumor PIK3CA, miR-29b, miR-19b [40, 44]
Lymphoma miR-155, miR-21, PTEN [47, 79, 80]

Other diseases
Coronavirus infection TMPRSS2 [54]
Distemper virus infection IFN-1 [55]
H5N1 infection CD59, RIBC2, CCDC33 [58]
Osteoarthritis miR-542, miR-543 [65]
Histiocytic proliferation disorder PTPN11 [70]
Dilated cardiomyopathy natriuretic peptide B [73]

Feline
Cancer

Glioblastoma miR-219, miR-124, miR-192 [49]
Other diseases

Coronavirus ACE2 [59, 60]
Calicivirus JAM-1 [63, 64]

VIM, vimentin; TP53, tumor protein 53; miRNAs, micro RNAs; ERBB2, erythroblastic oncogene B 2; FGFR3, 
fibroblast growth factor receptor 3; PD-L1, programmed death-ligand 1; MEK, mitogen-activated protein kinase 
kinase; NOS2, nitric oxide synthase 2; PI3KCA, phosphatidylinositol-3-kinase catalytic subunit alpha; PTEN, 
phosphate and tensin homologue; TMPRSS2, transmembrane protease serine 2; IFN-1, interferon-1; RIBC2, RIB43A 
domain with coiled-coils 2; CCDC33, coiled-coil domain containing 33; PTPN11, phosphate non-receptor type 11; 
ACE2, angiotensin-converting enzyme 2; JAM-1, junctional adhesion molecule-1.
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