DOI QR코드

DOI QR Code

Use of cutting-edge RNA-sequencing technology to identify biomarkers and potential therapeutic targets in canine and feline cancers and other diseases

  • Youngdong Choi (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Min-Woo Nam (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Hong Kyu Lee (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Kyung-Chul Choi (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University)
  • Received : 2023.02.01
  • Accepted : 2023.06.18
  • Published : 2023.09.30

Abstract

With the growing interest in companion animals and the rapidly expanding animal healthcare and pharmaceuticals market worldwide. With the advancements in RNAsequencing (RNA-seq) technology, it has become a valuable tool for understanding biological processes in companion animals and has multiple applications in animal healthcare. Historically, veterinary diagnoses and treatments relied solely on clinical symptoms and drugs used in human diseases. However, RNA-seq has emerged as an effective technology for studying companion animals, providing insights into their genetic information. The sequencing technology has revealed that not only messenger RNAs (mRNAs) but also noncoding RNAs (ncRNAs) such as long ncRNAs and microRNAs can serve as biomarkers. Based on the examination of RNA-seq applications in veterinary medicine, particularly in dogs and cats, this review concludes that RNA-seq has significant potential as a diagnostic and research tool. It has enabled the identification of potential biomarkers for cancer and other diseases in companion animals. Further research and development are required to maximize the utilization of RNA-seq for improved disease diagnosis and therapeutic targeting in companion animals.

Keywords

Acknowledgement

This work was supported by the Basic Research Lab Program (2022R1A4A1025557) through the National Research Foundation (NRF) of Korea, funded by the Ministry of Science and ICT. In addition, this study was also supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE; 2021RIS-001) in 2023.

References

  1. Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics technologies. PLOS Comput Biol. 2017;13(5):e1005457.
  2. Rao MS, Van Vleet TR, Ciurlionis R, Buck WR, Mittelstadt SW, Blomme EA, et al. Comparison of RNA-seq and microarray gene expression platforms for the toxicogenomic evaluation of liver from short-term rat toxicity studies. Front Genet. 2019;9:636.
  3. Xu J, Bai J, Zhang X, Lv Y, Gong Y, Liu L, et al. A comprehensive overview of lncRNA annotation resources. Brief Bioinform. 2017;18(2):236-249.
  4. Hombach S, Kretz M. Non-coding RNAs: classification, biology and functioning. Adv Exp Med Biol. 2016;937:3-17. https://doi.org/10.1007/978-3-319-42059-2_1
  5. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011;12(2):99-110. https://doi.org/10.1038/nrg2936
  6. Luteijn MJ, Ketting RF. PIWI-interacting RNAs: from generation to transgenerational epigenetics. Nat Rev Genet. 2013;14(8):523-534. https://doi.org/10.1038/ni.2618
  7. Nayak A, Tassetto M, Kunitomi M, Andino R. RNA interference-mediated intrinsic antiviral immunity in invertebrates. Curr Top Microbiol Immunol. 2013;371:183-200. https://doi.org/10.1007/978-3-642-37765-5_7
  8. Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol. 2014;32(5):453-461. https://doi.org/10.1038/nbt.2890
  9. Slack FJ, Chinnaiyan AM. The role of non-coding RNAs in oncology. Cell. 2019;179(5):1033-1055. https://doi.org/10.1016/j.cell.2019.10.017
  10. Arun G, Diermeier SD, Spector DL. Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol Med. 2018;24(3):257-277. https://doi.org/10.1016/j.molmed.2018.01.001
  11. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861-874. https://doi.org/10.1038/nrg3074
  12. Schook LB, Collares TV, Hu W, Liang Y, Rodrigues FM, Rund LA, et al. A genetic porcine model of cancer. PLoS One. 2015;10(7):e0128864.
  13. Banks ML, Czoty PW, Negus SS. Utility of nonhuman primates in substance use disorders research. ILAR J. 2017;58(2):202-215. https://doi.org/10.1093/ilar/ilx014
  14. Thiemeyer H, Taher L, Schille JT, Packeiser EM, Harder LK, Hewicker-Trautwein M, et al. An RNA-seq-based framework for characterizing canine prostate cancer and prioritizing clinically relevant biomarker candidate genes. Int J Mol Sci. 2021;22(21):11481.
  15. Pontius JU, Mullikin JC, Smith DR, ; Agencourt Sequencing Team, Lindblad-Toh K, Gnerre S, et al. Initial sequence and comparative analysis of the cat genome. Genome Res. 2007;17(11):1675-1689. https://doi.org/10.1101/gr.6380007
  16. Fulkerson CM, Dhawan D, Ratliff TL, Hahn NM, Knapp DW. Naturally occurring canine invasive urinary bladder cancer: a complementary animal model to improve the success rate in human clinical trials of new cancer drugs. Int J Genomics. 2017;2017:6589529.
  17. Harrow J, Nagy A, Reymond A, Alioto T, Patthy L, Antonarakis SE, et al. Identifying protein-coding genes in genomic sequences. Genome Biol. 2009;10(1):201.
  18. Tang F, Barbacioru C, Nordman E, Li B, Xu N, Bashkirov VI, et al. RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat Protoc. 2010;5(3):516-535. https://doi.org/10.1038/nprot.2009.236
  19. Packeiser EM, Taher L, Kong W, Ernst M, Beck J, Hewicker-Trautwein M, et al. RNA-seq of nine canine prostate cancer cell lines reveals diverse therapeutic target signatures. Cancer Cell Int. 2022;22(1):54. 
  20. Londhe P, Gutwillig M, London C. Targeted therapies in veterinary oncology. Vet Clin North Am Small Anim Pract. 2019;49(5):917-931. https://doi.org/10.1016/j.cvsm.2019.04.005
  21. Kobayashi M, Saito A, Tanaka Y, Michishita M, Kobayashi M, Irimajiri M, et al. MicroRNA expression profiling in canine prostate cancer. J Vet Med Sci. 2017;79(4):719-725. https://doi.org/10.1292/jvms.16-0279
  22. Hsu TI, Hsu CH, Lee KH, Lin JT, Chen CS, Chang KC, et al. MicroRNA-18a is elevated in prostate cancer and promotes tumorigenesis through suppressing STK4 in vitro and in vivo. Oncogenesis. 2014;3(4):e99.
  23. Maeda S, Tomiyasu H, Tsuboi M, Inoue A, Ishihara G, Uchikai T, et al. Comprehensive gene expression analysis of canine invasive urothelial bladder carcinoma by RNA-Seq. BMC Cancer. 2018;18(1):472.
  24. Blattner C. Regulation of p53: the next generation. Cell Cycle. 2008;7(20):3149-3153. https://doi.org/10.4161/cc.7.20.6921
  25. Baselga J, Swain SM. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer. 2009;9(7):463-475. https://doi.org/10.1038/nrc2656
  26. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507(7492):315-322. https://doi.org/10.1038/nature12965
  27. Cronise KE, Das S, Hernandez BG, Regan DP, Dailey DD, McGeachan RI, et al. Characterizing the molecular and immune landscape of canine bladder cancer. Vet Comp Oncol. 2022;20(1):69-81. https://doi.org/10.1111/vco.12740
  28. MacEwen EG, Kurzman ID, Vail DM, Dubielzig RR, Everlith K, Madewell BR, et al. Adjuvant therapy for melanoma in dogs: results of randomized clinical trials using surgery, liposome-encapsulated muramyl tripeptide, and granulocyte macrophage colony-stimulating factor. Clin Cancer Res. 1999;5(12):4249-4258.
  29. Fowles JS, Denton CL, Gustafson DL. Comparative analysis of MAPK and PI3K/AKT pathway activation and inhibition in human and canine melanoma. Vet Comp Oncol. 2015;13(3):288-304. https://doi.org/10.1111/vco.12044
  30. Brachelente C, Cappelli K, Capomaccio S, Porcellato I, Silvestri S, Bongiovanni L, et al. Transcriptome analysis of canine cutaneous melanoma and melanocytoma reveals a modulation of genes regulating extracellular matrix metabolism and cell cycle. Sci Rep. 2017;7(1):6386.
  31. Chang CF, Diers AR, Hogg N. Cancer cell metabolism and the modulating effects of nitric oxide. Free Radic Biol Med. 2015;79:324-336. https://doi.org/10.1016/j.freeradbiomed.2014.11.012
  32. Rahman MM, Lai YC, Husna AA, Chen HW, Tanaka Y, Kawaguchi H, et al. Micro RNA transcriptome profile in canine oral melanoma. Int J Mol Sci. 2019;20(19):4832.
  33. Zhou J, Gao Y, Lan Y, Jia S, Jiang R. Pax9 regulates a molecular network involving Bmp4, Fgf10, Shh signaling and the Osr2 transcription factor to control palate morphogenesis. Development. 2013;140(23):4709-4718. https://doi.org/10.1242/dev.099028
  34. Fenger JM, London CA, Kisseberth WC. Canine osteosarcoma: a naturally occurring disease to inform pediatric oncology. ILAR J. 2014;55(1):69-85. https://doi.org/10.1093/ilar/ilu009
  35. Ayers J, Milner RJ, Cortes-Hinojosa G, Riva A, Bechtel S, Sahay B, et al. Novel application of single-cell next-generation sequencing for determination of intratumoral heterogeneity of canine osteosarcoma cell lines. J Vet Diagn Invest. 2021;33(2):261-278. https://doi.org/10.1177/1040638720985242
  36. Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med. 2018;50(8):1-14. https://doi.org/10.1038/s12276-018-0071-8
  37. Shaffer SM, Dunagin MC, Torborg SR, Torre EA, Emert B, Krepler C, et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature. 2017;546(7658):431-435. https://doi.org/10.1038/nature22794
  38. Xu SH, Yang YL, Han SM, Wu ZH. MicroRNA-9 expression is a prognostic biomarker in patients with osteosarcoma. World J Surg Oncol. 2014;12(1):195. 
  39. Fenger JM, Roberts RD, Iwenofu OH, Bear MD, Zhang X, Couto JI, et al. MiR-9 is overexpressed in spontaneous canine osteosarcoma and promotes a metastatic phenotype including invasion and migration in osteoblasts and osteosarcoma cell lines. BMC Cancer. 2016;16(1):784.
  40. Lee KH, Hwang HJ, Noh HJ, Shin TJ, Cho JY. Somatic mutation of PIK3CA (H1047R) is a common driver mutation hotspot in canine mammary tumors as well as human breast cancers. Cancers (Basel). 2019;11(12):2006.
  41. Samuels Y, Velculescu VE. Oncogenic mutations of PIK3CA in human cancers. Cell Cycle. 2004;3(10):1221-1224. https://doi.org/10.4161/cc.3.10.1164
  42. Pereira B, Chin SF, Rueda OM, Vollan HK, Provenzano E, Bardwell HA, et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun. 2016;7(1):11479.
  43. Fish EJ, Martinez-Romero EG, DeInnocentes P, Koehler JW, Prasad N, Smith AN, et al. Circulating microRNA as biomarkers of canine mammary carcinoma in dogs. J Vet Intern Med. 2020;34(3):1282-1290. https://doi.org/10.1111/jvim.15764
  44. Fish EJ, Irizarry KJ, DeInnocentes P, Ellis CJ, Prasad N, Moss AG, et al. Malignant canine mammary epithelial cells shed exosomes containing differentially expressed microRNA that regulate oncogenic networks. BMC Cancer. 2018;18(1):832.
  45. Joos D, Leipig-Rudolph M, Weber K. Tumour-specific microRNA expression pattern in canine intestinal T-cell-lymphomas. Vet Comp Oncol. 2020;18(4):502-508. https://doi.org/10.1111/vco.12570
  46. Craig KK, Wood GA, Keller SM, Mutsaers AJ, Wood RD. MicroRNA profiling in canine multicentric lymphoma. PLoS One. 2019;14(12):e0226357.
  47. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647-658. https://doi.org/10.1053/j.gastro.2007.05.022
  48. Lagana A, Dirksen WP, Supsavhad W, Yilmaz AS, Ozer HG, Feller JD, et al. Discovery and characterization of the feline miRNAome. Sci Rep. 2017;7(1):9263.
  49. Qiao W, Guo B, Zhou H, Xu W, Chen Y, Liang Y, et al. miR-124 suppresses glioblastoma growth and potentiates chemosensitivity by inhibiting AURKA. Biochem Biophys Res Commun. 2017;486(1):43-48. https://doi.org/10.1016/j.bbrc.2017.02.120
  50. Lam L, Tien T, Wildung M, White L, Sellon RK, Fidel JL, et al. Comparative whole transcriptome analysis of gene expression in three canine soft tissue sarcoma types. PLoS One. 2022;17(9):e0273705.
  51. Forni D, Cagliani R, Clerici M, Sironi M. Molecular evolution of human coronavirus genomes. Trends Microbiol. 2017;25(1):35-48. https://doi.org/10.1016/j.tim.2016.09.001
  52. Erles K, Toomey C, Brooks HW, Brownlie J. Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease. Virology. 2003;310(2):216-223. https://doi.org/10.1016/S0042-6822(03)00160-0
  53. Wille M, Wensman JJ, Larsson S, van Damme R, Theelke AK, Hayer J, et al. Evolutionary genetics of canine respiratory coronavirus and recent introduction into Swedish dogs. Infect Genet Evol. 2020;82:104290.
  54. Gierer S, Bertram S, Kaup F, Wrensch F, Heurich A, Kramer-Kuhl A, et al. The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol. 2013;87(10):5502-5511. https://doi.org/10.1128/JVI.00128-13
  55. Chludzinski E, Klemens J, Ciurkiewicz M, Geffers R, Popperl P, Stoff M, et al. Phenotypic and transcriptional changes of pulmonary immune responses in dogs following canine distemper virus infection. Int J Mol Sci. 2022;23(17):10019.
  56. Hartawan R, Pujianto DA, Dharmayanti NL, Soebandrio A. Improving siRNA design targeting nucleoprotein gene as antiviral against the Indonesian H5N1 virus. J Vet Sci. 2022;23(2):e24. 
  57. Songserm T, Amonsin A, Jam-on R, Sae-Heng N, Pariyothorn N, Payungporn S, et al. Fatal avian influenza A H5N1 in a dog. Emerg Infect Dis. 2006;12(11):1744-1747. https://doi.org/10.3201/eid1211.060542
  58. Fu C, Luo J, Ye S, Yuan Z, Li S. Integrated lung and tracheal mRNA-seq and miRNA-seq analysis of dogs with an avian-like H5N1 canine influenza virus infection. Front Microbiol. 2018;9:303.
  59. Liang C, Hui N, Liu Y, Qiao G, Li J, Tian L, et al. Insights into forsythia honeysuckle (Lianhuaqingwen) capsules: a Chinese herbal medicine repurposed for COVID-19 pandemic. Phytomed Plus. 2021;1(2):100027.
  60. Cook S, Castillo D, Williams S, Haake C, Murphy B. Serotype I and II feline coronavirus replication and gene expression patterns of feline cells-building a better understanding of serotype I FIPV biology. Viruses. 2022;14(7):1356.
  61. Komina A, Krasnikov N, Kucheruk O, Zhukova E, Yuzhakov A, Gulyukin A. Distribution and genetic diversity of feline calicivirus in Moscow metropolitan area. J Vet Sci. 2022;23(6):e92.
  62. Spiri AM. An update on feline calicivirus. Schweiz Arch Tierheilkd. 2022;164(3):225-241. https://doi.org/10.17236/sat00346
  63. Teshima T, Yasumura Y, Suzuki R, Matsumoto H. Antiviral effects of adipose tissue-derived mesenchymal stem cells secretome against feline calicivirus and feline herpesvirus type 1. Viruses. 2022;14(8):1687.
  64. Makino A, Shimojima M, Miyazawa T, Kato K, Tohya Y, Akashi H. Junctional adhesion molecule 1 is a functional receptor for feline calicivirus. J Virol. 2006;80(9):4482-4490. https://doi.org/10.1128/JVI.80.9.4482-4490.2006
  65. Scalavino V, Liso M, Cavalcanti E, Gigante I, Lippolis A, Mastronardi M, et al. miR-369-3p modulates inducible nitric oxide synthase and is involved in regulation of chronic inflammatory response. Sci Rep. 2020;10(1):15942.
  66. Murata K, Yoshitomi H, Tanida S, Ishikawa M, Nishitani K, Ito H, et al. Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther. 2010;12(3):R86.
  67. Moore PF. A review of histiocytic diseases of dogs and cats. Vet Pathol. 2014;51(1):167-184. https://doi.org/10.1177/0300985813510413
  68. Affolter VK, Moore PF. Canine cutaneous and systemic histiocytosis: reactive histiocytosis of dermal dendritic cells. Am J Dermatopathol. 2000;22(1):40-48. https://doi.org/10.1097/00000372-200002000-00009
  69. Hedan B, Rault M, Abadie J, Ulve R, Botherel N, Devauchelle P, et al. PTPN11 mutations in canine and human disseminated histiocytic sarcoma. Int J Cancer. 2020;147(6):1657-1665. https://doi.org/10.1002/ijc.32991
  70. Takada M, Smyth LA, Thaiwong T, Richter M, Corner SM, Schall PZ, et al. Activating mutations in PTPN11 and KRAS in canine histiocytic sarcomas. Genes (Basel). 2019;10(7):505.
  71. Zainal NS, Lee BK, Wong ZW, Chin IS, Yee PS, Gan CP, et al. Effects of palbociclib on oral squamous cell carcinoma and the role of PIK3CA in conferring resistance. Cancer Biol Med. 2019;16(2):264-275. https://doi.org/10.20892/j.issn.2095-3941.2018.0257
  72. Hirabayashi M, Chambers JK, Tani A, Tomiyasu H, Motegi T, Rimpo K, et al. mRNA sequencing analysis and growth inhibitory effects of palbociclib on cell lines from canine histiocytic proliferative disorders. Vet Comp Oncol. 2022;20(3):587-601. https://doi.org/10.1111/vco.12812
  73. Friedenberg SG, Chdid L, Keene B, Sherry B, Motsinger-Reif A, Meurs KM. Use of RNA-seq to identify cardiac genes and gene pathways differentially expressed between dogs with and without dilated cardiomyopathy. Am J Vet Res. 2016;77(7):693-699. https://doi.org/10.2460/ajvr.77.7.693
  74. Tang W, Li M, Teng F, Cui J, Dong J, Wang W. Single-cell RNA-sequencing in asthma research. Front Immunol. 2022;13:988573.
  75. Perera TR, Skerrett-Byrne DA, Gibb Z, Nixon B, Swegen A. The future of biomarkers in veterinary medicine: emerging approaches and associated challenges. Animals (Basel). 2022;12(17):2194. 
  76. Hoeflich KP, Merchant M, Orr C, Chan J, Den Otter D, Berry L, et al. Intermittent administration of MEK inhibitor GDC-0973 plus PI3K inhibitor GDC-0941 triggers robust apoptosis and tumor growth inhibition. Cancer Res. 2012;72(1):210-219. https://doi.org/10.1158/0008-5472.CAN-11-1515
  77. Lopez-Rivera E, Jayaraman P, Parikh F, Davies MA, Ekmekcioglu S, Izadmehr S, et al. Inducible nitric oxide synthase drives mTOR pathway activation and proliferation of human melanoma by reversible nitrosylation of TSC2. Cancer Res. 2014;74(4):1067-1078. https://doi.org/10.1158/0008-5472.CAN-13-0588
  78. Liu JL, Li J, Xu JJ, Xiao F, Cui PL, Qiao ZG, et al. MiR-144 inhibits tumor growth and metastasis in osteosarcoma via dual-suppressing RhoA/ROCK1 signaling pathway. Mol Pharmacol. 2019;95(4):451-461. https://doi.org/10.1124/mol.118.114207
  79. Deffeyes JE, Harbourne RT, DeJong SL, Kyvelidou A, Stuberg WA, Stergiou N. Use of information entropy measures of sitting postural sway to quantify developmental delay in infants. J Neuroeng Rehabil. 2009;6(1):34.
  80. Inomata M, Tagawa H, Guo YM, Kameoka Y, Takahashi N, Sawada K. MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood. 2009;113(2):396-402.  https://doi.org/10.1182/blood-2008-07-163907