• 제목/요약/키워드: mRNA levels

Search Result 2,603, Processing Time 0.037 seconds

Effects of coated cysteamine hydrochloride on muscle fiber characteristics and amino acid composition of finishing pigs

  • Bai, Miaomiao;Liu, Hongnan;Xu, Kang;Yu, Rong;Oso, Abimbola Oladele;Deng, Jinping;Yin, Yulong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.9
    • /
    • pp.1430-1438
    • /
    • 2019
  • Objective: This experiment was designed to determine the effects of coated cysteamine hydrochloride (CC) on muscle fiber characteristics, amino acid composition and transporters gene expression in the longissimus dorsi muscle (LDM) of finishing pigs. Methods: Two hundred and sixteen Duroc/Landrace/Yorkshire cross-bred male finishing pigs were fed with a corn-soybean basal diet supplemented with 0, 70, and 140 mg/kg cysteamine. Each group contained eight replicates of nine pigs per replicate. After 29 days, one pig was randomly selected from each replicate and slaughtered. Blood and LDM samples were collected and analyzed. Results: The results showed that supplemental dietary CC increased (p<0.05) the muscle fiber density. And CC supplementation also up-regulated (p<0.05) the expression of myosin heavy chain 1 (MyHC1) and MyHC2x mRNA levels, and down-regulated (p<0.05) MyHC2b expression in the LDM. Additionally, supplemental dietary CC reduced (p<0.05) the concentration of total cholesterol in the plasma and enhanced (p<0.05) the concentrations of essential amino acid and total amino acid in the LDM. The relative expression levels of chloramphenicol acetyltransferase 2, $b^{0,+}$ amino acid transporter, and $y^+$-L-type amino acid transporter 1 were upregulated (p<0.05) in the LDM when pigs were fed with the dietary CC of 70 mg/kg. Conclusion: Cysteamine supplementation could increase fiber density and distribution of fiber types. It also improved the deposition of protein in the LDM by up-regulated the expression of amino acid transporters.

Effect of Angelicae Gigantis Radix for Inflammatory Response in HaCaT Cells (당귀(當歸) 추출물이 피부 각질형성세포의 염증반응에 미치는 영향)

  • Huh, Jung;Park, Hoyeon;Kim, Eom Ji;Kim, Eun-Young;Sohn, Youngjoo;Jung, Hyuk-Sang
    • The Korea Journal of Herbology
    • /
    • v.37 no.3
    • /
    • pp.9-19
    • /
    • 2022
  • Objectives : Angelicae Gigantis Radix (AG) is a plant of the Ranunculus family. AG have been reported to have various pharmacological effects on human health which include uterine growth promotion, anti-inflammatory, analgesic, and immune enhancement. However, research on dermatitis disease is insufficient. Therefore, we investigated the effects of AG on tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ) stimulated HaCaT cell. Methods : To investigate the effect of AG on HaCaT cell, HaCaT cells were pre-treated with AG for 1 hour and then stimulated with TNF-α/IFN-γ. After 24 hours, media and cells were harvested to analyze the inflammatory mediators. Concentration of human interleukin-1beta (IL-1β), monocyte chemoattractant protein-1 (MCP-1), granulocyte-macrophage colony-stimulating factor (GM-CSF), and TNF-α in the media were assessed by ELISA. mRNA expression of human thymus and activation-regulated chemokine (TARC), IL-6, and IL-8 were analyzed by RT-PCR. Additionally, the mechanisms of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway were investigated by Western blot. Results : The treatment of AG inhibited gene expression levels of IL-6, IL-8, and TARC and protein expression levels of IL-1β, MCP-1, and GM-CSF. Also, AG significantly reduced extracellular signal-regulated kinase (ERK) phosphorylation and NF-κB translocation in TNF-α/IFN-γ stimulated HaCaT cell. Conclusions : Taken together, these results demonstrate that AG can alleviate inflammatory diseases such as atopic dermatitis by regulating the expression of inflammatory cytokines. Also, it suggest that AG may a promising candidate drug for the treatment of inflammatory disease such as atopic dermatitis.

Anti-obesity effects of herbal extract YY312 in C57BL/6 mice fed a high-fat diet and 3T3-L1 cells (백모근(白茅根) 청피(靑皮) 오수유(吳茱萸) 복합방(複合方)(YY312)의 고지방식이로 유도된 마우스와 3T3-L1 세포에서 항비만 효과)

  • Kang, Insug;Hwang, Keun-Young;Choi, A-Young;Roh, Kughwan;Choi, Ji Hyun;Sim, Yeomoon;Park, Yoo Kyoung;Oh, Myung Sook
    • The Korea Journal of Herbology
    • /
    • v.28 no.1
    • /
    • pp.23-31
    • /
    • 2013
  • Objectives : The purpose of this study was to determine the anti-obesity effect and molecular mechanism of YY312, a herbal extract composed of Imperatae Rhizoma, Citri Unshius Pericarpium Immaturus, and Evodiae Fructus, on a high-fat diet-induced animal model and on 3T3-L1 cells. Methods : C57BL/6 mice were fed for 6 weeks with a normal diet or a high-fat diet (HFD). Then they orally administered daily with 300 mg/kg YY312 for next 10 weeks. Body weight and food consumption were recorded weekly and daily, respectively. Tissue weights, serum lipid, and glucose levels were analyzed at the end of the study. Additionally, the effects of YY312 on adipocyte differentiation in 3T3-L1 cells were examined. After differentiating 3T3-L1 cells were treated with YY312, Oil-red O staining, RT-PCR, and Western blotting were performed for lipid accumulation, mRNA expression of adipogenesis gene, and AMP-activated protein kinase (AMPK) phosphorylation, respectively. Results : YY312-administered mice showed a significant reduction of body weights and abdominal adipose tissue weights. YY312 also reduced the serum levels of triglycerides and total cholesterol, compared with the HFD group. Treatment with YY312 inhibited lipid accumulation and blocked expression of adipogenic transcription factors and lipogenesis genes, including peroxisome proliferator-activated receptor ${\gamma}$, CCAT/enhancer binding protein ${\alpha}$ and fatty acid synthase. YY312 increased AMPK phosphorylation in 3T3-L1 adipocytes. Conclusions : This study showed that herbal extract YY312 has an anti-obesity effect in vitro and in vivo. Thus, YY312 could be developed as a supplement for reduction of body weight gain induced by an HFD.

Tanshinone IIA reduces pyroptosis in rats with coronary microembolization by inhibiting the TLR4/MyD88/NF-κB/NLRP3 pathway

  • Li, Hao-Liang;Li, Tao;Chen, Zhi-Qing;Li, Lang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.335-345
    • /
    • 2022
  • Pyroptosis is an inflammatory form of programmed cell death that is linked with invading intracellular pathogens. Cardiac pyroptosis has a significant role in coronary microembolization (CME), thus causing myocardial injury. Tanshinone IIA (Tan IIA) has powerful cardioprotective effects. Hence, this study aimed to identify the effect of Tan IIA on CME and its underlying mechanism. Forty Sprague-Dawley (SD) rats were randomly grouped into sham, CME, CME + low-dose Tan IIA, and CME + high-dose Tan IIA groups. Except for the sham group, polyethylene microspheres (42 ㎛) were injected to establish the CME model. The Tan-L and Tan-H groups received intraperitoneal Tan IIA for 7 days before CME. After CME, cardiac function, myocardial histopathology, and serum myocardial injury markers were assessed. The expression of pyroptosis-associated molecules and TLR4/MyD88/NF-κB/NLRP3 cascade was evaluated by qRT-PCR, Western blotting, ELISA, and IHC. Relative to the sham group, CME group's cardiac functions were significantly reduced, with a high level of serum myocardial injury markers, and microinfarct area. Also, the levels of caspase-1 p20, GSDMD-N, IL-18, IL-1β, TLR4, MyD88, p-NF-κB p65, NLRP3, and ASC expression were increased. Relative to the CME group, the Tan-H and Tan-L groups had considerably improved cardiac functions, with a considerably low level of serum myocardial injury markers and microinfarct area. Tan IIA can reduce the levels of pyroptosis-associated mRNA and protein, which may be caused by inhibiting TLR4/MyD88/NF-κB/NLRP3 cascade. In conclusion, Tanshinone IIA can suppress cardiomyocyte pyroptosis probably through modulating the TLR4/MyD88/NF-κB/NLRP3 cascade, lowering cardiac dysfunction, and myocardial damage.

Ginsenoside Rg1 treatment protects against cognitive dysfunction via inhibiting PLC-CN-NFAT1 signaling in T2DM mice

  • Xianan Dong ;Liangliang Kong ;Lei Huang ;Yong Su ;Xuewang Li;Liu Yang;Pengmin Ji ;Weiping Li ;Weizu Li
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.458-468
    • /
    • 2023
  • Background: As a complication of Type II Diabetes Mellitus (T2DM), the etiology, pathogenesis, and treatment of cognitive dysfunction are still undefined. Recent studies demonstrated that Ginsenoside Rg1 (Rg1) has promising neuroprotective properties, but the effect and mechanism in diabetes-associated cognitive dysfunction (DACD) deserve further investigation. Methods: After establishing the T2DM model with a high-fat diet and STZ intraperitoneal injection, Rg1 was given for 8 weeks. The behavior alterations and neuronal lesions were judged using the open field test (OFT) and Morris water maze (MWM), as well as HE and Nissl staining. The protein or mRNA changes of NOX2, p-PLC, TRPC6, CN, NFAT1, APP, BACE1, NCSTN, and Ab1-42 were investigated by immunoblot, immunofluorescence or qPCR. Commercial kits were used to evaluate the levels of IP3, DAG, and calcium ion (Ca2+) in brain tissues. Results: Rg1 therapy improved memory impairment and neuronal injury, decreased ROS, IP3, and DAG levels to revert Ca2+ overload, downregulated the expressions of p-PLC, TRPC6, CN, and NFAT1 nuclear translocation, and alleviated Aβ deposition in T2DM mice. In addition, Rg1 therapy elevated the expression of PSD95 and SYN in T2DM mice, which in turn improved synaptic dysfunction. Conclusions: Rg1 therapy may improve neuronal injury and DACD via mediating PLC-CN-NFAT1 signal pathway to reduce Aβ generation in T2DM mice.

The purified extract of steamed Panax ginseng protects cardiomyocyte from ischemic injury via caveolin-1 phosphorylation-mediating calcium influx

  • Hai-Xia Li;Yan Ma;Yu-Xiao Yan;Xin-Ke Zhai;Meng-Yu Xin;Tian Wang;Dong-Cao Xu;Yu-Tong Song;Chun-Dong Song;Cheng-Xue Pan
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.755-765
    • /
    • 2023
  • Background: Caveolin-1, the scaffolding protein of cholesterol-rich invaginations, plays an important role in store-operated Ca2+ influx and its phosphorylation at Tyr14 (p-caveolin-1) is vital to mobilize protection against myocardial ischemia (MI) injury. SOCE, comprising STIM1, ORAI1 and TRPC1, contributes to intracellular Ca2+ ([Ca2+]i) accumulation in cardiomyocytes. The purified extract of steamed Panax ginseng (EPG) attenuated [Ca2+]i overload against MI injury. Thus, the aim of this study was to investigate the possibility of EPG affecting p-caveolin-1 to further mediate SOCE/[Ca2+]i against MI injury in neonatal rat cardiomyocytes and a rat model. Methods: PP2, an inhibitor of p-caveolin-1, was used. Cell viability, [Ca2+]i concentration were analyzed in cardiomyocytes. In rats, myocardial infarct size, pathological damages, apoptosis and cardiac fibrosis were evaluated, p-caveolin-1 and STIM1 were detected by immunofluorescence, and the levels of caveolin-1, STIM1, ORAI1 and TRPC1 were determined by RT-PCR and Western blot. And, release of LDH, cTnI and BNP was measured. Results: EPG, ginsenosides accounting for 57.96%, suppressed release of LDH, cTnI and BNP, and protected cardiomyocytes by inhibiting Ca2+ influx. And, EPG significantly relieved myocardial infarct size, cardiac apoptosis, fibrosis, and ultrastructure abnormality. Moreover, EPG negatively regulated SOCE via increasing p-caveolin-1 protein, decreasing ORAI1 mRNA and protein levels of ORAI1, TRPC1 and STIM1. More importantly, inhibition of the p-caveolin-1 significantly suppressed all of the above cardioprotection of EPG. Conclusions: Caveolin-1 phosphorylation is involved in the protective effects of EPG against MI injury via increasing p-caveolin-1 to negatively regulate SOCE/[Ca2+]i.

Mechanism of Panax notoginseng saponins modulation of miR-214-3p/NR1I3 affecting the pharmacodynamics and pharmacokinetics of warfarin

  • Yuting Yang;Zhenyu Zhai;Huiming Yao;Ling He;Jun Shao;Zirong Xia;Juxiang Li
    • Journal of Ginseng Research
    • /
    • v.48 no.5
    • /
    • pp.494-503
    • /
    • 2024
  • Background: With the prevalence of dietary supplements, the use of combinations of herbs and drugs is gradually increasing, together with the risk of drug interactions. In our clinical work, we unexpectedly found that the combination of Panax notoginseng and warfarin, which are herbs that activate blood circulation and remove blood stasis, showed antagonistic effects instead. The purpose of this study was to evaluate the drug interaction between Panax notoginseng saponins (PNS) and warfarin, the main active ingredient of Panax notoginseng, and to explore the interaction mechanism. Methods: The effects and mechanisms of PNS on the pharmacodynamics and pharmacokinetics of warfarin were explored mainly in Sprague-Dawley rats and HepG2 cells. Elisa was used to detect the concentrations of coagulation factors, HPLC-MS to detect the blood concentrations of warfarin in rats, immunoblotting was employed to examine protein levels, qRT-PCR to detect mRNA levels, cellular immunofluorescence to detect the localization of NR1I3, and dual luciferase to verify the binding of miR-214-3p and NR1I3. Results: PNS significantly accelerated warfarin metabolism and reduced its efficacy, accompanied by increased expression of NR1I3 and CYP2C9. Interference with NR1I3 rescued the accelerated metabolism of warfarin induce by PNS co-administration. In addition, we demonstrated that PNS significantly reduced miR-214-3p expression, whereas miR-214-3p overexpression reduced NR1I3 and CYP2C9 expression, resulting in a weakened antagonistic effect of PNS on warfarin. Additionally, we found that miR-214-3p bound directly to NR1I3 3'-UTR and significantly downregulated NR1I3 expression. Conclusion: Our study demonstrated that PNS accelerates warfarin metabolism and reduces its pharmacodynamics by downregulating miR-214-3p, leading to increased expression of its target gene NR1I3, these findings provide new insights for clinical drug applications to avoid adverse effects.

Improvement of Cell Viability Using a Rho-associated Protein Kinase (ROCK) Inhibitor in Human Dental Papilla derived Single-induced Pluripotent Stem Cells (ROCK 억제제를 통한 사람 치유두 조직 유래 단일 사람 유도만능줄기세포의 생존성 향상)

  • Shim, Yoo-Jin;Kang, Young-Hoon;Kim, Hyeon-Ji;Kim, Mi-Jeong;Lee, Hyeon-Jeong;Son, Young-Bum;Lee, Sung-Ho;Jeon, Byeong-Gyun
    • Journal of Life Science
    • /
    • v.29 no.8
    • /
    • pp.895-903
    • /
    • 2019
  • The aim of the present study was to improve the cell viability of human dental papilla derived single-induced pluripotent stem cells (iPSCs) using a Rho-associated protein kinase (ROCK) inhibitor, Y-27632. The iPSCs were produced using an episomal plasmid-based reprogramming method. After cell separation using trypsin, the iPSCs were treated with 0, 0.5, 1, 2.5, 5, 7.5, or $10{\mu}M$ Y-27632 for 5 d. Cell viability increased significantly following the $5{\mu}M$ Y-27632 treatment (p<0.05). When the iPSCs were exposed to medium containing $10{\mu}M$ Y-27632 for 0, 1, 2, 3, 4, and 5 d, the cell viability rate increased significantly in accordance with the cell viability rate (p<0.05). To evaluate the effect of the Y-27632 treatment on stemness characteristics, the expression of stem cell-specific transcripts and telomerase activity were investigated in the iPSCs treated with $10{\mu}M$ Y-27632 for 5 d. The expression levels of stem cell-specific transcripts, such as OCT-4, NONOG, and SOX-2, and telomerase activity were not significantly different in the iPSCs treated with $10{\mu}M$ Y-27632 as compared with those of untreated control iPSCs (p>0.05). Taken together, the results demonstrated that cell viability can be improved by treatment with the ROCK inhibitor Y-27632, without losing iPSC stemness characteristics.

Effects of Agrimonia pilosa Ledeb. Water Extract on α-Glucosidase Inhibition and Glucose Uptake in C2C12 Skeletal Muscle Cells (짚신나물 열수 추출물의 α-Glucosidase 저해 효과 및 근육세포에서 포도당 이용에 미치는 영향)

  • Kim, Sang-Mi;Lee, Young Min;Kim, Mi-Ju;Nam, Song-Yee;Kim, Sung-Hee;Jang, Hwan-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.4
    • /
    • pp.806-813
    • /
    • 2013
  • Agrimonia pilosa Ledeb. is a medicinal plant with anti-tumor, anti-oxidant, anti-inflammatory and anti-hyperglycemic activities. However, few studies of the anti-diabetic effect of A. pilosa on insulin resistance status have been performed. In the present study, the anti-diabetic effect of A. pilosa water extract (AP) was determined by investigating its ${\alpha}$-glucosidase inhibitory property, glucose utilization, and uptake, as well as insulin resistance mechanism of action in C2C12 skeletal muscle cells. Compared to positive control (acarbose), AP ($10mg/m{\ell}$) showed a similar ${\alpha}$-glucosidase inhibitory capacity. Glucose uptake was significantly increased by $1{\mu}m$ insulin treatment (p<0.05). However, palmitic acid (FFA, 1 mM) induced muscle insulin resistance and glucose uptake dysfunction. On the other hand, AP ($10{\mu}g/m{\ell}$) was capable of reversing the FFA-induced insulin resistance in C2C12 myotubes. Compared to control, AP ($100{\mu}g/m{\ell}$ without insulin) significantly increased the utilization of glucose (p<0.05) in C2Cl2 myotubes cultured in normal glucose (7 mM). AP treatment significantly increased the relative mRNA and protein expression levels of Akt. In particular, the effect of A. pilosa on the insulin signaling system is associated with the up-regulation of Akt genes and glucose uptake in C2Cl2 myotubes. These results suggest that A. pilosa is useful in the prevention of diabetes and the treatment of hyperglycemic disorders.

Development of Natural Antioxidants and Whitening Agents for Cosmeceuticals

  • Kim, Jong-Pyung
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2007.11a
    • /
    • pp.79-92
    • /
    • 2007
  • Oxidative stress have known to be a risk factor for the degenerative processes and closely related to a lot of diseases. It is well established that antioxidants are good in protection and therapeutic means against oxidative damage. There is increasing interest in natural antioxidants and many natural antioxidants have been found and utilized as the possible protection for various diseases and skin aging. We have screened natural antioxidant agents for cosmeceuticals, nutraceuticals, and drugs as therapeutic and preventive means against oxidative stress, and have developed a number of novel antioxidants from various natural sources. A novel melanin synthesis inhibitor, Melanocin A, isolated from the metabolite of a fungal strain Eupenicillium shearii F80695 inhibited mushroom tyrosinase and melanin biosynthesis of B16 melanoma cells with $IC_{50}$ value of 9.0 nM and MIC value of $0.9\;{\mu}M$, respectively. Melanocin A also exhibited potent antioxidant activity by scavenging of DPPH and superoxide anion radicals. UV was found to increase the level of hydrogen peroxides and other reactive oxygen species (ROS) in skin tissues. This increase in ROS may not only alter the structure and function of many genes and proteins directly but may also modulate their expressions through signal transduction pathways and, ultimately, lead to skin damage. We investigated the effect of Melanocin A on UV-induced premature skin aging. Firstly, the effect of Melanocin A on UV-induced matrix metalloproteinase (MMP)-9 expression in an immortalized human keratinocyte cell line, HaCaT in vitro was investigated. Acute UV irradiation induced MMP-9 expression at both the mRNA and protein levels and Melanocin A suppressed this expression in a dose-dependent manner. We then investigated UV-induced skin changes in hairless mice in vivo by Melanocin A. Chronic exposure of hairless mouse dorsal skin to UV increased skin thickness and induced wrinkle formation and the gelatinase activities of MMP-2 and MMP-9. Moreover, Melanocin A significantly suppressed UV-induced morphologic skin changes and MMP-2 and MMP-9 expression. These results show that Melanocin A can prevent the harmful effects of UV that lead to skin aging. Therefore, we suggest that Melanocin A should be viewed as a potential therapeutic agent for preventing and/or treating premature skin aging. Terrein is a bioactive fungal metabolite isolated from Penicillium species. Terrein has a relatively simple structure and can be easily synthesized. However, the biologic effects of terrein are comparatively unknown. We found for the first time that terrein potently inhibit melanin production in melanocytes and has a strong hypopigmentary effect in a spontaneously immortalized mouse melanocyte cell line, Mel-Ab. Treatment of Mel-Ab cells with terrein (10-100 mM) for 4 days significantly reduced melanin levels in a dose-dependent manner. In addition, terrein at the same concentration also reduced tyrosinase activity. We then investigated whether terrein influences the extracellular signal-regulated protein kinase (ERK) pathway and the expression of microphthalmia-associated transcription factor (MITF), which is required for tyrosinase expression. Terrein was found to induce sustained ERK activation and MITF down-regulation, and luciferase assays showed that terrein inhibits MITF promoter activity in a dose-dependent manner. To elucidate the correlation between ERK pathway activation and a decreased MITF transcriptional level, PD98059, a specific inhibitor of the ERK pathway, was applied before terrain treatment and found to abrogate the terrein-induced MITF attenuation. Terrein also reduced the tyrosinase protein level for at least 72 h. These results suggest that terrain reduces melanin synthesis by reducing tyrosinase production via ERK activation, and that this is followed by MITF down-regulation.

  • PDF