DOI QR코드

DOI QR Code

Ginsenoside Rg1 treatment protects against cognitive dysfunction via inhibiting PLC-CN-NFAT1 signaling in T2DM mice

  • Xianan Dong (Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University) ;
  • Liangliang Kong (Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University) ;
  • Lei Huang (Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University) ;
  • Yong Su (Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University) ;
  • Xuewang Li (Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University) ;
  • Liu Yang (Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University) ;
  • Pengmin Ji (Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University) ;
  • Weiping Li (Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University) ;
  • Weizu Li (Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University)
  • Received : 2022.06.21
  • Accepted : 2022.12.20
  • Published : 2023.05.01

Abstract

Background: As a complication of Type II Diabetes Mellitus (T2DM), the etiology, pathogenesis, and treatment of cognitive dysfunction are still undefined. Recent studies demonstrated that Ginsenoside Rg1 (Rg1) has promising neuroprotective properties, but the effect and mechanism in diabetes-associated cognitive dysfunction (DACD) deserve further investigation. Methods: After establishing the T2DM model with a high-fat diet and STZ intraperitoneal injection, Rg1 was given for 8 weeks. The behavior alterations and neuronal lesions were judged using the open field test (OFT) and Morris water maze (MWM), as well as HE and Nissl staining. The protein or mRNA changes of NOX2, p-PLC, TRPC6, CN, NFAT1, APP, BACE1, NCSTN, and Ab1-42 were investigated by immunoblot, immunofluorescence or qPCR. Commercial kits were used to evaluate the levels of IP3, DAG, and calcium ion (Ca2+) in brain tissues. Results: Rg1 therapy improved memory impairment and neuronal injury, decreased ROS, IP3, and DAG levels to revert Ca2+ overload, downregulated the expressions of p-PLC, TRPC6, CN, and NFAT1 nuclear translocation, and alleviated Aβ deposition in T2DM mice. In addition, Rg1 therapy elevated the expression of PSD95 and SYN in T2DM mice, which in turn improved synaptic dysfunction. Conclusions: Rg1 therapy may improve neuronal injury and DACD via mediating PLC-CN-NFAT1 signal pathway to reduce Aβ generation in T2DM mice.

Keywords

Acknowledgement

This work was supported by the Major Projects of the Anhui Provincial Department of Education (KJ2020ZD14); the National Natural Science Foundation of China (81970630); and the Basic and Clinical Cooperative Research Promotion Program of Anhui Medical University (2019xkjT021).

References

  1. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 2022;183:109119. 
  2. Miles WR. Psychologic tests applied to diabetic patients. Archives of Internal Medicine 1922;30(6):767-77.  https://doi.org/10.1001/archinte.1922.00110120086003
  3. Ojo O, Brooke J. Evaluating the association between diabetes, cognitive decline and dementia. Int J Environ Res Public Health 2015;12(7):8281-94.  https://doi.org/10.3390/ijerph120708281
  4. Fukazawa R, Hanyu H, Sato T, Shimizu S, Koyama S, Kanetaka H, et al. Subgroups of Alzheimer's disease associated with diabetes mellitus based on brain imaging. Dement Geriatr Cogn Disord 2013;35(5-6):280-90.  https://doi.org/10.1159/000348407
  5. Tinajero MG, Malik VS. An update on the epidemiology of type 2 diabetes: a global perspective. Endocrinol Metab Clin North Am 2021;50(3):337-55.  https://doi.org/10.1016/j.ecl.2021.05.013
  6. Lei H, Hu R, Luo G, Yang T, Shen H, Deng H, Chen C, Zhao H, Liu J. Altered Structural and Functional MRI Connectivity in Type 2 Diabetes Mellitus Related Cognitive Impairment: A Review. Front Hum Neurosci 2021;15(4):755017. 
  7. Smolina K, Wotton CJ, Goldacre MJ. Risk of dementia in patients hospitalised with type 1 and type 2 diabetes in England, 1998-2011: a retrospective national record linkage cohort study. Diabetologia 2015;58(5):942-50.  https://doi.org/10.1007/s00125-015-3515-x
  8. Umegaki H. Type 2 diabetes as a risk factor for cognitive impairment: current insights. Clin Interv Aging 2014;9:1011-9.  https://doi.org/10.2147/CIA.S48926
  9. Takeda S, Sato N, Uchio-Yamada K, Sawada K, Kunieda T, Takeuchi D, et al. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model with diabetes. Proc Natl Acad Sci U S A 2010;107(15):7036-41.  https://doi.org/10.1073/pnas.1000645107
  10. Morris JK, Vidoni ED, Honea RA, Burns JM. Alzheimer's Disease Neuroimaging I. Impaired glycemia increases disease progression in mild cognitive impairment. Neurobiol Aging 2014;35(3):585-9.  https://doi.org/10.1016/j.neurobiolaging.2013.09.033
  11. Sanchez-Alegria K, Bastian-Eugenio CE, Vaca L, Arias C. Palmitic acid induces insulin resistance by a mechanism associated with energy metabolism and calcium entry in neuronal cells. FASEB J 2021;35(7):e21712. 
  12. Lo Vasco VR, Leopizzi M, Di Maio V, Di Raimo T, Cesa S, Masci A, Rocca CD. LPS, Oleuropein and Blueberry extracts affect the survival, morphology and Phosphoinositide signalling in stimulated human endothelial cells. J Cell Commun Signal. 2017;11(4):317-27.  https://doi.org/10.1007/s12079-017-0391-9
  13. Guo W, Tang Q, Wei M, Kang Y, Wu JX, Chen L. Structural mechanism of human TRPC3 and TRPC6 channel regulation by their intracellular calcium-binding sites. Neuron 2022;(4):23-5. 
  14. He RL, Wu ZJ, Liu XR, Gui LX, Wang RX, Lin MJ. Calcineurin/NFAT signaling modulates pulmonary artery smooth muscle cell proliferation, migration and apoptosis in monocrotaline-induced pulmonary arterial hypertension rats. Cell Physiol Biochem 2018;49(1):172-89.  https://doi.org/10.1159/000492852
  15. Quang CT, Leboucher S, Passaro D, Fuhrmann L, Nourieh M, Vincent-Salomon A, Ghysdael J. The calcineurin/NFAT pathway is activated in diagnostic breast cancer cases and is essential to survival and metastasis of mammary cancer cells. Cell Death Dis 2015;6:e1658. 
  16. Abdul HM, Sama MA, Furman JL, Mathis DM, Beckett TL, Weidner AM, et al. Cognitive decline in Alzheimer's disease is associated with selective changes in calcineurin/NFAT signaling. J Neurosci 2009;29(41):12957-69.  https://doi.org/10.1523/JNEUROSCI.1064-09.2009
  17. Yuan DJ, Yang G, Wu W, Li QF, Xu DE, Ntim M, Jiang CY, Liu JC, Zhang Y, Wang YZ, et al. Reducing Nav1.6 expression attenuates the pathogenesis of Alzheimer's disease by suppressing BACE1 transcription. Aging Cell 2022;21(5):e13593. 
  18. Lin Y, Chen F, Zhang J, Wang T, Wei X, Wu J, et al. Neuroprotective effect of resveratrol on ischemia/reperfusion injury in rats through TRPC6/CREB pathways. J Mol Neurosci 2013;50(3):504-13.  https://doi.org/10.1007/s12031-013-9977-8
  19. Zhang S, Xue R, Hu R. The neuroprotective effect and action mechanism of polyphenols in diabetes mellitus-related cognitive dysfunction. Eur J Nutr 2020;59(4):1295-311.  https://doi.org/10.1007/s00394-019-02078-2
  20. Shen X, Dong X, Han Y, Li Y, Ding S, Zhang H, Sun Z, Yin Y, Li W, Li W. Ginsenoside Rg1 ameliorates glomerular fibrosis during kidney aging by inhibiting NOX4 and NLRP3 inflammasome activation in SAMP8 mice. Int Immunopharmacol 2020;82:106339. 
  21. Gao Y, Li J, Wang J, Li X, Li J, Chu S, Li L, Chen N, Zhang L. Ginsenoside Rg1 prevent and treat inflammatory diseases: A review. Int Immunopharmacol 2020;87:106805. 
  22. Li JB, Zhang R, Han X, Piao CL. Ginsenoside Rg1 inhibits dietary-induced obesity and improves obesity-related glucose metabolic disorders. Braz J Med Biol Res 2018;51(4):e7139. 
  23. Chen Y, Ding SX, Zhang H, Sun ZH, Shen XY, Sun LL, Yin YY, Qun S, Li WZ. Protective effects of ginsenoside Rg1 on neuronal senescence due to inhibition of NOX2 and NLRP1 inflammasome activation in SAMP8 mice. Journal of Functional Foods 2020;65:103713. 
  24. Dong XN, Li L, Zhang DD, Su Y, Yang L, Li XW, Han YL, Li WP, Li WZ. Ginsenoside Rg1 attenuates LPS-induced cognitive impairments and neuroinflammation by inhibiting NOX2 and Ca2+-CN-NFAT1 signaling in mice. Journal of Functional Foods 2021;87:104791. 
  25. Feldman AT, Wolfe D. Tissue processing and hematoxylin and eosin staining. Methods Mol Biol 2014;1180:31-43.  https://doi.org/10.1007/978-1-4939-1050-2_3
  26. Wu X, Lv YG, Du YF, Hu M, Reed MN, Long Y, et al. Inhibitory effect of INT-777 on lipopolysaccharide-induced cognitive impairment, neuroinflammation, apoptosis, and synaptic dysfunction in mice. Prog Neuropsychopharmacol Biol Psychiatry 2019;88:360-74.  https://doi.org/10.1016/j.pnpbp.2018.08.016
  27. El-Benna J, Dang PM, Gougerot-Pocidalo MA, Marie JC, Braut-Boucher F. p47phox, the phagocyte NADPH oxidase/NOX2 organizer: structure, phosphorylation and implication in diseases. Exp Mol Med 2009;41(4):217-25.  https://doi.org/10.3858/emm.2009.41.4.058
  28. Tsukamoto A, Hayashida Y, Furukawa KS, Ushida T. Spatio-temporal PLC activation in parallel with intracellular Ca2+ wave propagation in mechanically stimulated single MDCK cells. Cell Calcium 2010;47(3):253-63.  https://doi.org/10.1016/j.ceca.2009.12.008
  29. You Y, Liu Z, Chen Y, Xu Y, Qin J, Guo S, et al. The prevalence of mild cognitive impairment in type 2 diabetes mellitus patients: a systematic review and meta-analysis. Acta Diabetol 2021;58(6):671-85.  https://doi.org/10.1007/s00592-020-01648-9
  30. Nie L, Xia J, Li H, Zhang Z, Yang Y, Huang X, He Z, Liu J, Yang X. Ginsenoside Rg1 Ameliorates Behavioral Abnormalities and Modulates the Hippocampal Proteomic Change in Triple Transgenic Mice of Alzheimer's Disease. Oxid Med Cell Longev 2017;2017:6473506. 
  31. Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol 2018;14(10):591-604.  https://doi.org/10.1038/s41574-018-0048-7
  32. Biessels GJ. Sweet memories: 20 years of progress in research on cognitive functioning in diabetes. Eur J Pharmacol 2013;719(1-3):153-60.  https://doi.org/10.1016/j.ejphar.2013.04.055
  33. Martinez-Valbuena I, Valenti-Azcarate R, Amat-Villegas I, Riverol M, Marcilla I, de Andrea CE, et al. Amylin as a potential link between type 2 diabetes and alzheimer disease. Ann Neurol 2019;86(4):539-51.  https://doi.org/10.1002/ana.25570
  34. Graveling AJ, Deary IJ, Frier BM. Acute hypoglycemia impairs executive cognitive function in adults with and without type 1 diabetes. Diabetes Care 2013;36(10):3240-6.  https://doi.org/10.2337/dc13-0194
  35. Liu Z, Dai X, Zhang H, Shi R, Hui Y, Jin X, Zhang W, Wang L, Wang Q, Wang D, et al. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nat Commun 2020;11(1):855. 
  36. Tian X, Liu Y, Ren G, Yin L, Liang X, Geng T, Dang H, An R. Resveratrol limits diabetes-associated cognitive decline in rats by preventing oxidative stress and inflammation and modulating hippocampal structural synaptic plasticity. Brain Res 2016;1650:1-9.  https://doi.org/10.1016/j.brainres.2016.08.032
  37. An JR, Su JN, Sun GY, Wang QF, Fan YD, Jiang N, et al. Liraglutide Alleviates Cognitive Deficit in db/db Mice: Involvement in Oxidative Stress, Iron Overload, and Ferroptosis. Neurochem Res 2022;47(2):279-94.  https://doi.org/10.1007/s11064-021-03442-7
  38. Ahmad W, Ijaz B, Shabbiri K, Ahmed F, Rehman S. Oxidative toxicity in diabetes and Alzheimer's disease: mechanisms behind ROS/ RNS generation. J Biomed Sci 2017;24(1):76. 
  39. Fan LM, Geng L, Cahill-Smith S, Liu F, Douglas G, McKenzie CA, et al. Nox2 contributes to age-related oxidative damage to neurons and the cerebral vasculature. J Clin Invest 2019;129(8):3374-86.  https://doi.org/10.1172/JCI125173
  40. Su Y, Chen Q, Ma K, Ju Y, Ji T, Wang Z, et al. Astragaloside IV inhibits palmitate-mediated oxidative stress and fibrosis in human glomerular mesangial cells via downregulation of CD36 expression. Pharmacol Rep 2019;71(2):319-29.  https://doi.org/10.1016/j.pharep.2018.12.008
  41. Zhang H, Su Y, Sun Z, Chen M, Han Y, Li Y, et al. Ginsenoside Rg1 alleviates Abeta deposition by inhibiting NADPH oxidase 2 activation in APP/PS1 mice. J Ginseng Res 2021;45(6):665-75.  https://doi.org/10.1016/j.jgr.2021.03.003
  42. Bezprozvanny I. Calcium signaling and neurodegenerative diseases. Trends Mol Med 2009;15(3):89-100.  https://doi.org/10.1016/j.molmed.2009.01.001
  43. Berridge MJ. Calcium hypothesis of Alzheimer's disease. Pflugers Arch 2010;459(3):441-9.  https://doi.org/10.1007/s00424-009-0736-1
  44. Yadav VR, Song T, Mei L, Joseph L, Zheng YM, Wang YX. PLCgamma1-PKCepsilon-IP3R1 signaling plays an important role in hypoxia-induced calcium response in pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2018;314(5):L724-35.  https://doi.org/10.1152/ajplung.00243.2017
  45. Beziau DM, Toussaint F, Blanchette A, Dayeh NR, Charbel C, Tardif JC, Dupuis J, Ledoux J. Expression of phosphoinositide-specific phospholipase C isoforms in native endothelial cells. PLoS One 2015;10(4):e0123769. 
  46. Dietrich A, Gudermann T. TRPC6: physiological function and pathophysiological relevance. Handb Exp Pharmacol 2014;222:157-88.  https://doi.org/10.1007/978-3-642-54215-2_7
  47. Dietrich A, Gudermann T. Trpc6. Handb Exp Pharmacol. 2007;179:125-41.  https://doi.org/10.1007/978-3-540-34891-7_7
  48. Szrejder M, Rachubik P, Rogacka D, Audzeyenka I, Rychlowski M, Kreft E, Angielski S, Piwkowska A. Metformin reduces TRPC6 expression through AMPK activation and modulates cytoskeleton dynamics in podocytes under diabetic conditions. Biochim Biophys Acta Mol Basis Dis 2020;1866(3):165610. 
  49. Su Y, Chen Q, Ju Y, Li W, Li W. Palmitate induces human glomerular mesangial cells fibrosis through CD36-mediated transient receptor potential canonical channel 6/nuclear factor of activated T cell 2 activation. Biochim Biophys Acta Mol Cell Biol Lipids 2020;1865(12):158793. 
  50. Yan X, Wang J, Zhu Y, Feng W, Zhai C, Liu L, et al. S1P induces pulmonary artery smooth muscle cell proliferation by activating calcineurin/NFAT/OPN signaling pathway. Biochem Biophys Res Commun 2019;516(3):921-7.  https://doi.org/10.1016/j.bbrc.2019.06.160
  51. Rajput MS, Nirmal NP, Rathore D, Dahima R. Dimethyl fumarate exerts neuroprotection by modulating calcineurin/NFAT1 and NFkappaB dependent BACE1 activity in Abeta1-42 treated neuroblastoma SH-SY5Y cells. Brain Res Bull 2020;165:97-107.  https://doi.org/10.1016/j.brainresbull.2020.08.024
  52. Cho HJ, Jin SM, Youn HD, Huh K, Mook-Jung I. Disrupted intracellular calcium regulates BACE1 gene expression via nuclear factor of activated T cells 1 (NFAT 1) signaling. Aging Cell 2008;7(2):137-47.  https://doi.org/10.1111/j.1474-9726.2007.00360.x
  53. Cho HJ, Son SM, Jin SM, Hong HS, Shin DH, Kim SJ, et al. RAGE regulates BACE1 and Abeta generation via NFAT1 activation in Alzheimer's disease animal model. FASEB J 2009;23(8):2639-49.  https://doi.org/10.1096/fj.08-126383
  54. Eid RA, Alkhateeb MA, Eleawa SM, Zaki MSA, El-Kott AF, El-Sayed F, Otifi H, Alqahtani S, Asiri ZA, Aldera H. Fas/FasL-mediated cell death in rat's diabetic hearts involves activation of calcineurin/NFAT4 and is potentiated by a high-fat diet rich in corn oil. J Nutr Biochem 2019;68:79-90.  https://doi.org/10.1016/j.jnutbio.2019.03.007
  55. Dong S, Li G, Zheng D, Wu J, Sun D, Yang F, Yu X, Li T, Sun A, Liu J, et al. A novel role for the calcium sensing receptor in rat diabetic encephalopathy. Cell Physiol Biochem 2015;35(1):38-50.  https://doi.org/10.1159/000369673
  56. Valente T, Gella A, Fernandez-Busquets X, Unzeta M, Durany N. Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer's disease and diabetes mellitus. Neurobiol Dis 2010;37(1):67-76.  https://doi.org/10.1016/j.nbd.2009.09.008
  57. Son SM, Song H, Byun J, Park KS, Jang HC, Park YJ, et al. Accumulation of autophagosomes contributes to enhanced amyloidogenic APP processing under insulin-resistant conditions. Autophagy 2012;8(12):1842-4.  https://doi.org/10.4161/auto.21861
  58. Selkoe D. The cell biology of β-amyloid precursor protein and presenilin in Alzheimer's disease. Trends in Cell Biology 1998;8(11):447-53.  https://doi.org/10.1016/S0962-8924(98)01363-4
  59. Sesele K, Thanopoulou K, Paouri E, Tsefou E, Klinakis A, Georgopoulos S. Conditional inactivation of nicastrin restricts amyloid deposition in an Alzheimer's disease mouse model. Aging Cell 2013;12(6):1032-40.  https://doi.org/10.1111/acel.12131
  60. Choi SI, Lee B, Woo JH, Jeong JB, Jun I, Kim EK. APP processing and metabolism in corneal fibroblasts and epithelium as a potential biomarker for Alzheimer's disease. Exp Eye Res 2019;182:167-74. https://doi.org/10.1016/j.exer.2019.03.012