• Title/Summary/Keyword: m-closed mappings

Search Result 6, Processing Time 0.019 seconds

ON M-OPEN MAPPINGS

  • Min, Won Keun;Chang, Hong Soon
    • Korean Journal of Mathematics
    • /
    • v.7 no.1
    • /
    • pp.117-121
    • /
    • 1999
  • In this paper, we introduce $m$-open(closed) mappings by $m$-sets, and obtain a number of their properties. In particular, $m$-open(closed) mappings are used to extend known results for ${\alpha}$-open mapping, semi-open mappings and preopen mappings.

  • PDF

NEW KINDS OF OPEN MAPPINGS VIA FUZZY NANO M-OPEN SETS

  • V. KALAIYARASAN;S. TAMILSELVAN;A. PRABHU;C. JOHN SUNDAR
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.3
    • /
    • pp.525-540
    • /
    • 2023
  • In this paper, we introduce the concept of fuzzy nano M open and fuzzy nano M closed mappings in fuzzy nano topological spaces. Also, we study about fuzzy nano M Homeomorphism, almost fuzzy nano M totally mappings, almost fuzzy nano M totally continuous mappings and super fuzzy nano M clopen continuous functions and their properties in fuzzy nano topological spaces. By using these mappings, we can able to extended the relation between normal spaces and regular spaces in fuzzy nano topological spaces.

Some characterizations of a mapping defined by interval-valued Choquet integrals

  • Jang, Lee-Chae;Kim, Hyun-Mee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.66-70
    • /
    • 2007
  • Note that Choquet integral is a generalized concept of Lebesgue integral, because two definitions of Choquet integral and Lebesgue integral are equal if a fuzzy measure is a classical measure. In this paper, we consider interval-valued Choquet integrals with respect to fuzzy measures(see [4,5,6,7]). Using these Choquet integrals, we define a mappings on the classes of Choquet integrable functions and give an example of a mapping defined by interval-valued Choquet integrals. And we will investigate some relations between m-convex mappings ${\phi}$ on the class of Choquet integrable functions and m-convex mappings $T_{\phi}$, defined by the class of closed set-valued Choquet integrals with respect to fuzzy measures.

ON CLOSED CONVEX HULLS AND THEIR EXTREME POINTS

  • Lee, S.K.;Khairnar, S.M.
    • Korean Journal of Mathematics
    • /
    • v.12 no.2
    • /
    • pp.107-115
    • /
    • 2004
  • In this paper, the new subclass denoted by $S_p({\alpha},{\beta},{\xi},{\gamma})$ of $p$-valent holomorphic functions has been introduced and investigate the several properties of the class $S_p({\alpha},{\beta},{\xi},{\gamma})$. In particular we have obtained integral representation for mappings in the class $S_p({\alpha},{\beta},{\xi},{\gamma})$) and determined closed convex hulls and their extreme points of the class $S_p({\alpha},{\beta},{\xi},{\gamma})$.

  • PDF

ON THE EXISTENCE OF SOLUTIONS OF EXTENDED GENERALIZED VARIATIONAL INEQUALITIES IN BANACH SPACES

  • He, Xin-Feng;Wang, Xian;He, Zhen
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.527-532
    • /
    • 2009
  • In this paper, we study the following extended generalized variational inequality problem, introduced by Noor (for short, EGVI) : Given a closed convex subset K in q-uniformly smooth Banach space B, three nonlinear mappings T : $K\;{\rightarrow}\;B^*$, g : $K\;{\rightarrow}\;K$, h : $K\;{\rightarrow}\;K$ and a vector ${\xi}\;{\in}\;B^*$, find $x\;{\in}\;K$, $h(x)\;{\in}\;K$ such that $\xi$, g(y)-h(x)> $\geq$ 0, for all $y\;{\in}\;K$, $g(y)\;{\in}\;K$. [see [2]: M. Aslam Noor, Extended general variational inequalities, Appl. Math. Lett. 22 (2009) 182-186.] By using sunny nonexpansive retraction $Q_K$ and the well-known Banach's fixed point principle, we prove existence results for solutions of (EGVI). Our results extend some recent results from the literature.