• Title/Summary/Keyword: m-$ZrO_2$

Search Result 597, Processing Time 0.024 seconds

Hydrothermal Synthesis of PZT Powders. (수열법에 의한 PZT분말 합성 연구)

  • 최승도;박병규
    • Korean Journal of Crystallography
    • /
    • v.8 no.2
    • /
    • pp.97-104
    • /
    • 1997
  • Hydrothermal synthesis of PbZ1-xTixO3 has been investigated. Syntheses were performed using lead acetate triphdrate as Pb source, Ti/Zr gel by hydrolizing Ti-isopropoxide as Tiand Zr source and Zr-propoxide and KOH (0.5m, 1m, 2m) as mineralizer. The hydrothermal synthesis has been examined at 140℃, 150℃ and 160℃. Synthesized PZT powders showed a rectangular shape and were agglomerate. At 1m and 2m KOH concentrations PZT powders were synthesized the respective time of 8 hrs and 1hr but at 0.5m KOH concentration phase pure PZT powders were not synthesized for 5days reaction. At the conditions of low temperature and low KOH concentration unreacted Ti/Zr gel remained although synthesized powders were almost PZT. The size of PZT powders increased with KOH concentrations. PbO solid solutions were formed as intermediate phases and these were classified to PbO-10%TiO2 solid solution and PbO-3% TiO-3% TiO2 solid solution.

  • PDF

Atomic layer chemical vapor deposition of Zr $O_2$-based dielectric films: Nanostructure and nanochemistry

  • Dey, S.K.
    • Electrical & Electronic Materials
    • /
    • v.16 no.9
    • /
    • pp.64.2-65
    • /
    • 2003
  • A 4 nm layer of ZrOx (targeted x-2) was deposited on an interfacial layer(IL) of native oxide (SiO, t∼1.2 nm) surface on 200 mm Si wafers by a manufacturable atomic layer chemical vapor deposition technique at 30$0^{\circ}C$. Some as-deposited layers were subjected to a post-deposition, rapid thermal annealing at $700^{\circ}C$ for 5 min in flowing oxygen at atmospheric pressure. The experimental x-ray diffraction, x-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and high-resolution parallel electron energy loss spectroscopy results showed that a multiphase and heterogeneous structure evolved, which we call the Zr-O/IL/Si stack. The as-deposited Zr-O layer was amorphous $ZrO_2$-rich Zr silicate containing about 15% by volume of embedded $ZrO_2$ nanocrystals, which transformed to a glass nanoceramic (with over 90% by volume of predominantly tetragonal-$ZrO_2$(t-$ZrO_2$) and monoclinic-$ZrO_2$(m-$ZrO_2$) nanocrystals) upon annealing. The formation of disordered amorphous regions within some of the nanocrystals, as well as crystalline regions with defects, probably gave rise to lattice strains and deformations. The interfacial layer (IL) was partitioned into an upper Si $o_2$-rich Zr silicate and the lower $SiO_{x}$. The latter was sub-toichiometric and the average oxidation state increased from Si0.86$^{+}$ in $SiO_{0.43}$ (as-deposited) to Si1.32$^{+}$ in $SiO_{0.66}$ (annealed). This high oxygen deficiency in $SiO_{x}$ indicative of the low mobility of oxidizing specie in the Zr-O layer. The stacks were characterized for their dielectric properties in the Pt/{Zr-O/IL}/Si metal oxide-semiconductor capacitor(MOSCAP) configuration. The measured equivalent oxide thickness (EOT) was not consistent with the calculated EOT using a bilayer model of $ZrO_2$ and $SiO_2$, and the capacitance in accumulation (and therefore, EOT and kZr-O) was frequency dispersive, trends well documented in literature. This behavior is qualitatively explained in terms of the multi-layer nanostructure and nanochemistry that evolves.ves.ves.

  • PDF

A Study of Crystallization and Fracture Toughness of Glass Ceramics in the ZrO2·SiO2 Systems Prepared by the Sol-Gel Method (졸-겔법으로 제조한 ZrO2·SiO2계 결정화 유리의 결정화 및 파괴인성에 관한 연구)

  • Shin, Dae-Yong;Han, Sang-Mok;Kang, Wie-Soo
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.247-256
    • /
    • 2000
  • Precursor gels with the composition of $xZrO_2{\cdot}(100-x)SiO_2$ systems (x=10, 20 and 30 mol%) were prepared by the sol-gel method. Kinetic parameters, such as activation energy, Avrami's exponent, n, and dimensionality crystal growth value, m, have been simultaneously calculated from the DTA data using Kissinger and Matusita equations. The crystallite size dependence on tetragonal to monoclinic transformation of $ZrO_2$ was investigated using XRD, in relation to the fracture toughness. The crystallization of tetragonal $ZrO_2$ occurred through 3-dimensional diffusion controlled growth(n=m=2) and the activation energy for crystallization was calculated using Kissinger and Matusita equations, as about $310{\sim}325{\pm}10kJ/mol$. The growth of $t-ZrO_2$, in proportion to the cube of radius, increased with increasing heating temperature and heat-treatment time. It was suggested that the diffusion of Zr4+ions by Ostwald ripening was rate-limiting process for the growth of $t-ZrO_2$ crystallite size. The fracture toughness of $xZrO_2{\cdot}(100-x)SiO_2$ systems glass ceramics increased with increasing crystallite size of $t-ZrO_2$. The fracture toughness of $30ZrO_2{\cdot}70SiO_2$ system glass ceramics heated at $1,100^{\circ}C$ for 5 h was $4.84Mpam^{1/2}$ at a critical crystaliite size of 40 nm.

  • PDF

Preparation of $ZrO_2/Al_2O_3-Mullite$ Composites Using the Silica Sol Infiltration Method (실리카 졸 침투법을 이용한 $ZrO_2/Al_2O_3-Mullite$ 복합체의 제조)

  • 현상훈;최지영
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.9
    • /
    • pp.719-728
    • /
    • 1992
  • ZrO2/Al2O3-Mullite composites were prepared by infiltration of the silica sol to the porous ZrO2/Al2O3 bodies. The porous ZrO2/Al2O3 bodies for infiltration were fabricated using ZrO2 (20wt%)/Al2O3 composite powders synthesized by the emulsion-hot kerosene drying method. The preparation of silica sols was conducted by the hydrolysis-peptization of an alcoholic TEOS solution. When ZrO2/Al2O3-Mullite and ZrO2/Al2O3 composites were sintered at 1$650^{\circ}C$ for 4 hrs, both of them showed an excellent sinterability. As the amount of mullite added in the composites increased, the ratio of the tetragonal phase of zirconia to the monoclinic phase at the room temperature became higher. It was known that values of the fracture toughness of the ZrO2/Al2O3-Mullite composites were about 5.48 MPa.m1/2 much larger than that of the ZrO2/Al2O3 system.

  • PDF

A Synthesis and Characteristics for ZrO2-Y2O3 System Powders by Coprecipitation Method ; I. The Properties and Sinterabilities of ZrO2-8m/o Y2O3 (공침법에 의한 ZrO2-Y2O3계 분말합성 및 특성;I. ZrO2-8m/o Y2O3의 특성 및 소결성)

  • 방대규;윤종석;이희수
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.2
    • /
    • pp.242-248
    • /
    • 1989
  • The powder properties and sinterability of ZrO2-8m/o Y2O3 prepared by coprecipitation were investigated. The specific surface area and the total pore volume were increased with increasing pH of sediment and using of ethyl alcohol for washing. The powders of prepared by freeze drying method were showed the smallest particle size and lowest agglomerate rate, and the powders obtained from spray drying method were showed porous structure. At 130$0^{\circ}C$, their relative density were 94-96%, so these sintered bodies have revealed high sinterability in spite of low sintering temperature.

  • PDF

Effect of Calcination Temperature on Cobalt Adsorption Capacity of$ZrO_2$ prepared by Sol-Gel Process (졸-겔법으로 제조한 $ZrO_2$ 의 코발트 흡착량에 미치는 하소온도의 영향)

  • 김유환;김용익;배성렬
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.432-440
    • /
    • 1996
  • ZrO2 gel was prepared under pH 10 alkaline condition by sol-gel process and was investigated as a function of calcination temperature and effect of calcination temperature on cobalt adsorption capacity. The ZrO2 powder prepared by sol-gel process was calcined at 600, 800, 1000, 1200, 140$0^{\circ}C$ and analyzed by X-ray diffractometry. SEM specific surface area by BET nitrogen adsorption FT-IR and TG-DTA technique. It was shown that cobalt adsorption capacity of ZrO2 prepared under pH 10 alkaline condition and then calcined at $600^{\circ}C$ in high temperature was determined to be larger than that of ZrO2 at various calcination temperature. The specific surface area of ZrO2 calcined at $600^{\circ}C$ was 24.03m2/g and cobalt adsorption capacity at 25$0^{\circ}C$ high-temperature water was 0.16m-eq/g.

  • PDF

Physicochemical and Catalytic Properties of NiSO4/CeO2-ZrO2 Catalyst Promoted with CeO2 for Acid Catalysis

  • Sohn, Jong-Rack;Shin, Dong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1265-1272
    • /
    • 2007
  • A solid acid catalyst, NiSO4/CeO2-ZrO2 was prepared simply by promoting ZrO2 with CeO2 and supporting nickel sulfate on CeO2-ZrO2. The support of NiSO4 on ZrO2 shifted the phase transition of ZrO2 from amorphous to tetragonal to higher temperatures because of the interaction between NiSO4 and ZrO2. The surface area of 10-NiSO4/1-CeO2-ZrO2 promoted with CeO2 and calcined at 600 oC was very high (83 m2/g) compared to that of unpromoted 10-NiSO4/ZrO2 (45 m2/g). This high surface area of 10-NiSO4/1-CeO2-ZrO2 was due to the promoting effect of CeO2 which makes zirconia a stable tetragonal phase as confirmed by XRD. The role of CeO2 was to form a thermally stable solid solution with zirconia and consequently to give high surface area and acidity of the sample, and high thermal stability of the surface sulfate species. 10-NiSO4/1- CeO2-ZrO2 containing 1 mol% CeO2 and 10 wt% NiSO4, and calcined at 600 oC exhibited maximum catalytic activities for both reactions, 2-propanol dehydration and cumene dealkylation.

Microstructures and Densification Behaviors of $Al_2O_3-ZrO_2(ZTA)$ Composites Fabricated by a Surface-induced Coating (표면-유기 코팅에 의해 합성한 $Al_2O_3-ZrO_2(ZTA)$ 복합체의 미세구조와 소결거동)

  • 장현명;문종하;김광수
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.1
    • /
    • pp.17-24
    • /
    • 1994
  • Al2O3-ZrO2(ZTA) composites were fabricated by a surface-induced coating of the precursor for the ZrO2 phase on the kinetically stable colloid particles of Al2O3. The fabricated composites were characterized by a uniform spatial distribution of the dispersed ZrO2 phase and by the absence of large ZrO2 grains throughout the Al2O3 matrix. The fracture toughness (KIC) and the bending strength of ZTA composites sintered at 1$600^{\circ}C$, respectively, were 5.6 MPa.m1/2 (for 20 wt% ZrO2) and 600 MPa (for 15wt% ZrO2). The fraction of tetragonal ZrO2 phase decreases as the total content of ZrO2, suggesting that both the stress-induced tlongrightarrowm transformation and the microcrack nucleation contribute to the toughening of the ZTA composites fabricated by the surface-induced coating.

  • PDF

Microwave Dielectric Properties of $(Pb_{1-x}Ca_x)ZrO_3$ and $(Pb_{0.63},Ca_{0.37-x}M_x)ZrO_3$ (M = Mg, Sr) Ceramics ($(Pb_{1-x}Ca_x)ZrO_3$$(Pb_{0.63},Ca_{0.37-x}M_x)ZrO_3$ 세라믹스의 고주파 유전 특성)

  • 윤중락;이헌용
    • Electrical & Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.533-540
    • /
    • 1997
  • The microwave dielectric properties of ((P $b_{1-x}$ C $a_{x}$)Zr $O_3$ and (P $b_{0.63}$,C $a_{0.37-x}$ $M_{x}$)Zr $O_3$(M=Mg,Sr) ceramics were investigated. In (P $b_{1-x}$ C $a_{x}$)Zr $O_3$ (X=0.33~0.40) ceramics, high quality factor and small temperature coefficient of resonant frequency were obtain in (P $b_{0.63}$C $a_{0.37}$)Zr $O_3$with perovskite structure. In the case of (P $b_{0.63}$C $a_{0.37-x}$M $g_{x}$)Zr $O_3$ dielectric constant temperature coefficient of resonant frequency increased and quality factor decreased due to increase of polarization of A-O bonding. When replacing Ca ion with Sr ion with large ion radius, polarization decreased with increased of bonding length and thus dielectric constant and temperature coefficient of resonant frequency decreased.decreased.creased.

  • PDF

Fabrication of Al2O3/ZrO2Ceramics by the Polymerization Dispersion Process (ZrO2의 고분자화 분산법을 이용한 Al2O3/ZrO2요업체의 제조)

  • Cho, Myung-Je;Hwang, Kyu-Hong;Lee, Jong-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.4
    • /
    • pp.284-288
    • /
    • 2004
  • To improve mechanical properties of $Al_2$O$_3$/ZrO$_2$composites have been controlled dispersion of ultra low size ZrO$_2$ particles in $Al_2$O$_3$ ceramics by polymeric precursor method (Pechini process). In case of coprecipitation or mechanical mixing of ZrO$_2$ powders with $Al_2$O$_3$, homogeneous dispersion and controlling the ZrO$_2$ size were relatively difficult due to high sintering temperature. So the polyesterization process of Zr/Y(NO$_3$)$_3$-citric acid solution in ethylene glycol with the commercial sub-micron sized o(-alumina powder (Sumitomo AES-11(0.4 ${\mu}{\textrm}{m}$)) was adopted in order to obtain homogeneous dispersion of ZrO$_2$ in A1203. By this partial polyesterization process, the homogeneous dispersion of relatively low sized ZrO$_2$in $Al_2$O$_3$/ZrO$_2$composites was achieved at 1450∼1$600^{\circ}C$ of sintering temperature range and their mechanical properties were measured.