Effect of Calcination Temperature on Cobalt Adsorption Capacity of$ZrO_2$ prepared by Sol-Gel Process

졸-겔법으로 제조한 $ZrO_2$ 의 코발트 흡착량에 미치는 하소온도의 영향

  • Published : 1996.04.01

Abstract

ZrO2 gel was prepared under pH 10 alkaline condition by sol-gel process and was investigated as a function of calcination temperature and effect of calcination temperature on cobalt adsorption capacity. The ZrO2 powder prepared by sol-gel process was calcined at 600, 800, 1000, 1200, 140$0^{\circ}C$ and analyzed by X-ray diffractometry. SEM specific surface area by BET nitrogen adsorption FT-IR and TG-DTA technique. It was shown that cobalt adsorption capacity of ZrO2 prepared under pH 10 alkaline condition and then calcined at $600^{\circ}C$ in high temperature was determined to be larger than that of ZrO2 at various calcination temperature. The specific surface area of ZrO2 calcined at $600^{\circ}C$ was 24.03m2/g and cobalt adsorption capacity at 25$0^{\circ}C$ high-temperature water was 0.16m-eq/g.

본 연구는 졸-겔법을 이용하여 알칼리 조건인 pH 10에서 제조한 ZrO2의 하소온도에 따른 분말특성과 코발트 흡착량에 미치는 하소온도의 영향에 대하여 검토하였다. 졸-겔법을 이용하여 ZrO2 분말을 제조하고, 600, 800, 1000, 1200, 140$0^{\circ}C$로 하소한 후, X-선 회절법, SEM, BET 방법, Fourier transform 적외선(FT-IR), 열중량 및 열시차분석법(TG-DTA)등을 이용하여 특성을 분석하였다. 알칼리조건인 pH 10에서 제조한 ZrO2는 하소온도가 $600^{\circ}C$일때 고온수에서 코발트 흡착량이 가장 우수하였으며, 이때 $600^{\circ}C$로 하소한 ZrO2의 비표면적은 24.03m2/g이였으며 25$0^{\circ}C$의 고온수에서 코발트 흡착량은 0.16m-eq/g이였다.

Keywords

References

  1. Ceramics v.16 no.5 Ceramic Processing Firing-Introduction to powder Preparation for ceramics N. Mizutani
  2. J. Mater. Sci. v.25 Structural properties of ultra-fine Zirconia powders obtained by precipitation methods A. Benedetti;G. Fagherazzi;F. Pinna;S. Polizzi
  3. Preparation of ceramic Fine Powders by the Solution Technique and Their Characteristics S.H. Hyun
  4. Mater. Sci. Res. v.17 Preparation of Shaped Glasses through Sol-Gel method S. Sakka;K. Kamiya
  5. Westinghouse Electric Corporation Report CVNA-135 Inorganic Ion Exchange Materials for Waste Purification in CVTR N. Michael;W.D. Fletcher;M.J. Bell;D.E. Croucher
  6. Am. Ceram. Soc. Bull. v.64 no.11 Sol-Gel Synthesis of Glasses: Present and Future S. Sakka
  7. Am. Ceram. Soc. Bull. v.64 no.12 Sol-Gel Processing of Ceramics and Glass D.W. Johnson, Jr.
  8. J. Mater. Sci. v.21 Zirconium oxides formed by hydrolytic condensation of alkoxides and parametera that affect their morphology B.E. Yoldas
  9. Yogyo-Kyokai-Shi v.92 no.2 Preparation of Ultra-Fine Particles of Monoclinic ZrO₂ by Hydrolysis of $ZrOC^{12}$ Y. Murase;E. Kato;M. Hirano
  10. Inorganic Ion Exchangers C.B. Amphlett
  11. Radiochem. Radioanal Letters. v.33 no.5-6 Adsorption of Ions on Titanium Oxide at Temperature up to 280℃ M. Kikuchi(et al.)
  12. J. Inorg. Nucl. Chem. v.43 Cobalt Adsorption in High Temperature Water Using Titanium Oxide Supported on Alumina K. Fujita(et al.)
  13. Chem. & Ind. Ion-Exchange Properties of Hydrous Zirconium Oxide C.B. Amphlett(et al.)
  14. J. Am. Ceram. Soc. v.55 no.6 Phase Analysis in Zirconia Systems R.C. Garvie;P.S. Nicholson
  15. Science and Technology of Zirconia v.3 Effect of Inclusion Size on the Retention of Tetragonal ZrO₂: Theory and Experiments F.F. Lange;D.J. Green
  16. J. Am. Ceram. Soc. v.73 no.9 Nanometer-Sized ZrO₂ Particles Prepared by a Sol-Emulsion-Gel Method S.D. Ramamuthi;Z. Xu;D.A. Payne
  17. J. Am. Ceram. Soc. v.54 no.5 Infrared and Paman Spectra of Zirconia Polymorphs C.M. Phillippi;K.S. Mazdiyasni
  18. J. Eur. Ceram. Soc. v.7 Sol-Gel-Derived Cao and CeO₂ stabilized ZrO₂ Fibers-Conversion Process of Gel to Oxide and Tensile Strength K. Kamiya(et al.)