• Title/Summary/Keyword: luteolin

Search Result 292, Processing Time 0.032 seconds

Luteolin Induced-growth Inhibition and Apoptosis of Human Esophageal Squamous Carcinoma Cell Line Eca109 Cells in vitro

  • Wang, Ting-Ting;Wang, Shao-Kang;Huang, Gui-Ling;Sun, Gui-Ju
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5455-5461
    • /
    • 2012
  • Luteolin is a plant flavonoid which exhibits anti-oxidative, anti-inflammatory and anti-tumor effects. However, the antiproliferative potential of luteolin is not fully understood. In this study, we investigated the effect of luteolin on cell cycling and apoptosis in human esophageal squamous carcinoma cell line Eca109 cells. MTT assays showed that luteolin had obvious cytotoxicity on Eca109 with an $IC_{50}$ of $70.7{\pm}1.72{\mu}M$ at 24h. Luteolin arrested cell cycle progression in the G0/G1 phase and prevented entry into S phase in a dose- and time-dependent manner. as assessed by FCM. Luteolin induced apoptosis of Eca109 cells was demonstrated by AO/EB staining assay and annexin V-FITC/PI staining. Moreover, luteolin downregulated the expression of cyclin D1, survivin and c-myc, and it also upregulated the expression of p53, in line with the fact that luteolin was able to inhibit Eca109 cell proliferation.

Luteolin Induces Apoptosis via Mitochondrial Pathway and Inhibits Invasion and Migration of Oral Squamous Cell Carcinoma by Suppressing Epithelial-Mesenchymal Transition Induced Transcription Factors

  • Park, Bong-Soo;Kil, Jong-Jin;Kang, Hae-Mi;Yu, Su-Bin;Park, Dan-Bi;Park, Jin-A;Kim, In-Ryoung
    • International Journal of Oral Biology
    • /
    • v.43 no.2
    • /
    • pp.69-76
    • /
    • 2018
  • Oral squamous cell carcinoma (OSCC) is the most common type of oral malignancy. Numerous therapies have been proposed for its cure. Research is continually being conducted to develop new forms of treatment as current therapies are associated with numerous side-effects. Luteolin, a common dietary flavonoid, has been demonstrated to possess strong anti-cancer activity against various human cancer cell lines. Nevertheless, research into luteolin-based anticancer activity against oral cancer remains scarce. Thus, the objective of this study was to assess the effect of luteolin as an anti-cancer agent. After treatment with luteolin, Ca9-22 and CAL-27 oral cancer cells showed condensed nuclei and enhanced apoptotic rate with evidence of mitochondria-mediated apoptosis. Epithelialmesenchymal transition (EMT) is closely related to tumor migration and invasion. Luteolin suppressed cancer cell invasion and migration in the current study. Elevated expression of E-cadherin, an adherens junction protein, was evident in both cell lines after luteolin treatment. Luteolin also significantly inhibited transcription factors (i.e., N-cadherin, Slug, Snail, Twist, and ZEB-1) that regulated expression of tumor suppressors such as E-cadherin based on Western blot analysis and quantitative PCR. Thus, luteolin could induce mitochondrial apoptosis and inhibit cancer cell invasion and migration by suppressing EMT-induced transcription factors.

Quantitative Determination of Five Phenolic Peroxynitrite-scavengers in Nine Korean Native Compositae herbs

  • Nugroho, Agung;Lim, Sang-Cheol;Karki, Subash;Choi, Jae Sue;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • v.21 no.3
    • /
    • pp.155-161
    • /
    • 2015
  • Peroxynitrite (ONOO)-scavenging activities of nine Compositae herbs consisting of three Ixeris, two Youngia, two Cirsium and one of each Lactuca and Taraxacum species were evaluated. The contents of their ONOO scavengers in the extracts were also determined on a HPLC using seven standard compounds, chlorogenic acid (CGA), chicoric acid (CA), luteolin 7-glucoside (luteolin-7-glc), luteolin 7-glucuronide (luteolin-7-glcU), luteolin, linarin and pectolinarin. Five of those compounds exhibited potent ONOO-scavenging activities: IC50, CA (0.76 μM), CGA (1.34 μM), luteolin (0.81 μM), luteolin-7-glc (0.86 μM) and luteolin-7-glcU (3.13 μM). Both CA and luteolin-7-glc were highly contained in I. dentata (19.71 mg/g and 13.58 mg/g, respectively), I. dentata var. albiflora (17.58 mg/g and 23.83 mg/g, respectively) and I. sonchifolia (65.71 mg/g and 6.99 mg/g, respectively). Among the nine herbs, those three Ixeris species had very low IC50 values over the range of 0.48 - 1.74 μg/mL, suggesting that they could be potential therapeutic vegetables, particularly for preventing diabetic complications or obesity, which can be caused by an excess production of ONOO.

Luteolin 5-O-glucoside from Korean Milk Thistle, Cirsium maackii, Exhibits Anti-Inflammatory Activity via Activation of the Nrf2/HO-1 Pathway

  • Jung, Hyun Ah;Roy, Anupom;Abdul, Qudeer Ahmed;Kim, Hyeung Rak;Park, Hee Juhn;Choi, Jae Sue
    • Natural Product Sciences
    • /
    • v.23 no.3
    • /
    • pp.183-191
    • /
    • 2017
  • Luteolin 5-O-glucoside is the major flavonoid from Korean thistle, Cirsium maackii. We previously reported the anti-inflammatory activities of luteolin 5-O-glucoside in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. In this study, we determined the anti-inflammatory mechanisms of luteolin 5-O-glucoside through the inhibition of nitric oxide (NO) production in vitro and in vivo. Results revealed that luteolin 5-O-glucoside dose-dependently inhibited NO production and expression of iNOS and COX-2 in LPS-induced RAW 264.7 cells. Luteolin 5-O-glucoside also significantly inhibited the translocation of $NF-{\kappa}B$, the activation of MAPKs, and ROS generation in LPS-induced RAW 264.7 cells. In addition, protein expressions of Nrf-2 and HO-1 were also upregulated by luteolin 5-O-glucoside treatment. Moreover, luteolin 5-O-glucoside inhibited ${\lambda}-carrageenan-induced$ mouse paw edema by 65.34% and 48.31% at doses of 50 and 100 mg/kg body weight, respectively. These findings indicate potential anti-inflammatory effect of luteolin 5-O-glucoside particularly by downregulating $NF-{\kappa}B$ and upregulating HO-1/Nrf-2 pathway.

Luteolin Inhibits the Activity, Secretion and Gene Expression of MMP-3 in Cultured Articular Chondrocytes and Production of MMP-3 in the Rat Knee

  • Kang, Bun-Jung;Ryu, Jiho;Lee, Choong Jae;Hwang, Sun-Chul
    • Biomolecules & Therapeutics
    • /
    • v.22 no.3
    • /
    • pp.239-245
    • /
    • 2014
  • We investigated whether luteolin affects the gene expression, secretion and activity of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as production of MMP-3 in the rat knee to evaluate the potential chondroprotective effects of luteolin. Rabbit articular chondrocytes were cultured in a monolayer and IL-$1{\beta}$-induced gene expression levels of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), ADAMTS-5 and type II collagen were measured by reverse transcription - polymerase chain reaction (RT-PCR). Effects of luteolin on interleukin- $1{\beta}$ (IL-$1{\beta}$)-induced secretion and enzyme activity of MMP-3 in rabbit articular chondrocytes were investigated by western blot analysis and casein zymography, respectively. The effect of luteolin on MMP-3 protein production was also examined in vivo. The results were as follows: (1) luteolin inhibited the gene expression levels of MMP-3, MMP-1, MMP-13, ADAMTS-4 and ADAMTS-5. However, it increased the gene expression level of collagen in rabbit articular chondrocytes; (2) luteolin inhibited the secretion and activity of MMP-3; (3) luteolin inhibited in vivo production of MMP-3 protein. These results suggest that luteolin can regulate the gene expression, secretion and activity of MMP-3, by directly acting on articular chondrocytes.

Regulation of Nrf2 Mediated Phase II Enzymes by Luteolin in human Hepatocyte

  • Park, Chung Mu
    • Biomedical Science Letters
    • /
    • v.20 no.2
    • /
    • pp.56-61
    • /
    • 2014
  • This study attempted to confirm the antioxidative potential of luteolin against tert-butyl hydroperoxide (t-BHP) induced oxidative damage and to investigate its molecular mechanism related to glutathione (GSH)-dependent enzymes in HepG2 cells. Treatment with luteolin resulted in attenuation of t-BHP induced generation of reactive oxygen species (ROS) and oxidative stress-mediated cell death. In addition, accelerated expression of GSH-dependent antioxidative enzymes, glutathione peroxidase (GPx) and glutathione reductase (GR), and heme oxygenase (HO)-1, as well as strengthened GSH content was induced by treatment with luteolin, which was in accordance with increased nuclear translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), a transcription factor for phase 2 enzymes, in a dose-dependent manner. These results suggest that the cytoprotective potential of luteolin against oxidative damage can be attributed to fortified GSH-mediated antioxidative pathway and HO-1 expression through regulation of Nrf2 in HepG2 cells.

Isolation of Antioxidant and Antibrowning Substance from Chionanthus retusa Leaves (이팝나무 잎으로부터 항산화 및 항갈변물질의 분리)

  • Lee, Young-Nam;Jeong, Chang-Ho;Shim, Ki-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.9
    • /
    • pp.1419-1425
    • /
    • 2004
  • This study was performed to examine in vitro antioxidative activities such as DPPH radical scavenging activity, reducing power and tyrosinase inhibitory effect of various solvent fractions from Chionanthus retusa leaves. Ethyl acetate fraction showed potent antioxidative activity and tyrosinase inhibitory effect. The active compound was isolated from the butanol fraction by silica gel column chromatography and MPLC. The isolated compound was luteolin-4'-O-glucoside determined by $^1H$, $^{13}C$-NMR and 2D NMR. Compared with several antioxidant compounds, luteolin-4'-O-glucoside exhibited effective DPPH radical scavenging activity and reducing power in a concentration dependent manner. Bioassay with pure luteolin-4'-O-glucoside showed a dose-independent inhibitory effect on L-DOPA oxidation by mushroom tyrosinase and its $IC_{50}$ values were established as 23.2 ${\mu}g/mL$. Therefore, we may suggest that luteolin-4'-O-glucoside can be used as a food additive possessing the potent antioxidative activity and skin-whitening cosmetic material.

Luteolin attenuates migration and invasion of lung cancer cells via suppressing focal adhesion kinase and non-receptor tyrosine kinase signaling pathway

  • Masraksa, Wuttipong;Tanasawet, Supita;Hutamekalin, Pilaiwanwadee;Wongtawatchai, Tulaporn;Sukketsiri, Wanida
    • Nutrition Research and Practice
    • /
    • v.14 no.2
    • /
    • pp.127-133
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Non-small cell lung cancer is mostly recognized among other types of lung cancer with a poor prognosis by cause of chemotherapeutic resistance and increased metastasis. Luteolin has been found to decrease cell metastasis. However, its underlying mechanisms remain unresolved. The objective of this study was to examine the effect (and its mechanism) of luteolin on the migration and invasion of human non-small cell lung cancer A549 cells. MATERIALS/METHODS: Cell viability was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Wound healing and transwell assays were evaluated to assess migration and invasion, respectively. Western blot analysis and immunofluorescence were further performed to investigate the role of luteolin and its mechanisms of action. RESULTS: Administration with up to 40 μM luteolin showed no cytotoxic activity on lung cancer A549 cells or non-cancer MRC-5 cells. Additionally, luteolin at 20-40 μM significantly suppressed A549 cells' migration, invasion, and the formation of filopodia in a concentration-dependent manner at 24 h. This is similar with western blot analysis, which revealed diminished the phosphorylated focal adhesion kinase (pFAK), phosphorylated non-receptor tyrosine kinase (pSrc), Ras-related C3 botulinum toxin substrate 1 (Rac1), cell division control protein 42 (Cdc42), and Ras homolog gene family member A (RhoA) expression levels. CONCLUSIONS: Overall, our data indicate that luteolin plays a role in controlling lung cancer cells' migration and invasion via Src/FAK and its downstream Rac1, Cdc42, and RhoA pathways. Luteolin might be considered a promising candidate for suppressing invasion and metastasis of lung cancer cells.

Luteolin and fisetin suppress oxidative stress by modulating sirtuins and forkhead box O3a expression under in vitro diabetic conditions

  • Kim, Arang;Lee, Wooje;Yun, Jung-Mi
    • Nutrition Research and Practice
    • /
    • v.11 no.5
    • /
    • pp.430-434
    • /
    • 2017
  • BACKGROUND/OBJECTIVE: Chronic hyperglycemia induces oxidative stress via accumulation of reactive oxygen species (ROS) and contributes to diabetic complications. Hyperglycemia induces mitochondrial superoxide anion production through the increased activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. This study aimed to determine whether fisetin and luteolin treatments suppress the oxidative stress by modulating the expression of sirtuins (SIRTs) and forkhead box O3a (FOXO3a) under hyperglycemic conditions in human monocytes. MATERIALS/METHODS: Human monocytic cells (THP-1) were cultured under osmotic control (14.5 mmol/L mannitol), normoglycemic (NG, 5.5 mmol/L glucose), or hyperglycemic (HG, 20 mmol/L glucose) conditions, in the absence or presence of fisetin and luteolin for 48 h. To determine the effect of fisetin and luteolin treatments on high glucose-induced oxidative stress, western blotting and intracellular staining were performed. RESULTS: Hyperglycemic conditions increased the ROS production, as compared to normoglycemic condition. However, fisetin and luteolin treatments inhibited ROS production under hyperglycemia. To obtain further insight into ROS production in hyperglycemic conditions, evaluation of p47phox expression revealed that fisetin and luteolin treatments inhibited p47phox expression under hyperglycemic conditions. Conversely, the expression levels of SIRT1, SIRT3, SIRT6, and FOXO3a were decreased under high glucose conditions compared to normal glucose conditions, but exposure to fisetin and luteolin induced the expression of SIRT1, SIRT3, SIRT6, and FOXO3a. The above findings suggest that fisetin and luteolin inhibited high glucose-induced ROS production in monocytes through the activation of SIRTs and FOXO3a. CONCLUSIONS: The results of our study supports current researches that state fisetin and luteolin as potential agents for the development of novel strategies for diabetes.

Luteolin Inhibits Proliferation Induced by IGF-1 Pathway Dependent ERα in Human Breast Cancer MCF-7 Cells

  • Wang, Li-Meng;Xie, Kun-Peng;Huo, Hong-Nan;Shang, Fei;Zou, Wei;Xie, Ming-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1431-1437
    • /
    • 2012
  • The growth of many breast tumors is stimulated by IGF-1, which activates signal transduction pathways inducing cell proliferation. $ER{\alpha}$ is important in this process. The aim of the study was to investigate relationships in vitro among inhibitory effects of luteolin on the growth of MCF-7 cells, IGF-1 pathway and $ER{\alpha}$. Our results showed that luteolin could effectively block IGF-l-stimulated MCF-7 cell proliferation in a dose- and time-dependent manner and block cell cycle progression and induce apoptosis evidenced by the flow cytometric detection of sub-G1DNA content. Luteolin markedly decreased IGF-l-dependent IGF-IR and Akt phosphorylation without affecting Erk1/2 phosphorylation. Further experiments pointed out that $ER{\alpha}$ was directly involved in IGF-l induced cell growth inhibitory effects of luteolin, which significantly decreased $ER{\alpha}$ expression. Knockdown of $ER{\alpha}$ in MCF-7 cells by an $ER{\alpha}$-specific siRNA decreased the IGF-l induced cell growth inhibitory effects of luteolin. $ER{\alpha}$ is thus a possible target of luteolin. These findings indicate that the inhibitory effect of luteolin on the growth of MCF-7 cells is via inhibiting IGF-l mediated PI3K-Akt pathway dependent of $ER{\alpha}$ expression.