Browse > Article
http://dx.doi.org/10.4062/biomolther.2014.020

Luteolin Inhibits the Activity, Secretion and Gene Expression of MMP-3 in Cultured Articular Chondrocytes and Production of MMP-3 in the Rat Knee  

Kang, Bun-Jung (Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University)
Ryu, Jiho (Department of Pharmacology, School of Medicine, Chungnam National University)
Lee, Choong Jae (Department of Pharmacology, School of Medicine, Chungnam National University)
Hwang, Sun-Chul (Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University)
Publication Information
Biomolecules & Therapeutics / v.22, no.3, 2014 , pp. 239-245 More about this Journal
Abstract
We investigated whether luteolin affects the gene expression, secretion and activity of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as production of MMP-3 in the rat knee to evaluate the potential chondroprotective effects of luteolin. Rabbit articular chondrocytes were cultured in a monolayer and IL-$1{\beta}$-induced gene expression levels of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), ADAMTS-5 and type II collagen were measured by reverse transcription - polymerase chain reaction (RT-PCR). Effects of luteolin on interleukin- $1{\beta}$ (IL-$1{\beta}$)-induced secretion and enzyme activity of MMP-3 in rabbit articular chondrocytes were investigated by western blot analysis and casein zymography, respectively. The effect of luteolin on MMP-3 protein production was also examined in vivo. The results were as follows: (1) luteolin inhibited the gene expression levels of MMP-3, MMP-1, MMP-13, ADAMTS-4 and ADAMTS-5. However, it increased the gene expression level of collagen in rabbit articular chondrocytes; (2) luteolin inhibited the secretion and activity of MMP-3; (3) luteolin inhibited in vivo production of MMP-3 protein. These results suggest that luteolin can regulate the gene expression, secretion and activity of MMP-3, by directly acting on articular chondrocytes.
Keywords
Osteoarthritis; Luteolin; Chondrocyte;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Choi, E. M. and Lee, Y. S. (2010) Luteolin suppresses IL-1beta-induced cytokines and MMPs production via p38 MAPK, JNK, NFkappaB and AP-1 activation in human synovial sarcoma cell line, SW982. Food Chem. Toxicol. 48, 2607-2611.   DOI
2 Dean, D. D., Martel-Pelletier, J., Pelletier, J. P., Howell, D. S. and Woessner, J. F. Jr. (1989) Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J. Clin. Invest. 84, 678-685.   DOI
3 Echtermeyer, F., Bertrand, J., Dreier, R., Meinecke, I., Neugebauer, K., Fuerst, M., Lee, Y. J., Song, Y. W., Herzog, C., Theilmeier, G. and Pap, T. (2009) Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat. Med. 15, 1072-1076.   DOI   ScienceOn
4 Freemont, A. J., Hampson, V., Tilman, R., Goupille, P., Taiwo, Y. and Hoyland, J. A. (1997) Gene expression of matrix metalloproteinases 1, 3, and 9 by chondrocytes in osteoarthritic human knee articular cartilage is zone and grade specific. Ann. Rheum. Dis. 56, 542-549.   DOI   ScienceOn
5 Garnero, P., Rousseau, J. C. and Delmas. P. D. (2000) Molecular basis and clinical use of biochemical markers of bone, cartilage, and synovium in joint diseases. Arthritis Rheum. 43, 953-968.   DOI   ScienceOn
6 Goupille, P., Jayson, M. I., Valat, J. P. and Freemont, A. J. (1998) Matrix metalloproteinases: the clue to intervertebral disc degeneration. Spine (Phila Pa 1976) 23, 1612-1626.   DOI   ScienceOn
7 Hou, Y., Wu, J., Huang, Q. and Guo, L. (2009) Luteolin inhibits proliferation and affects the function of stimulated rat synovial fibroblasts. Cell Biol. Int. 33,135-147.   DOI
8 Aida, Y., Maeno, M., Suzuki, N., Shiratsuchi, H., Motohashi, M. and Matsumura, H. (2005) The effect of IL-1beta on the expression of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in human chondrocytes. Life Sci. 77, 3210-3221.   DOI
9 Aigner, T. and McKenna, L. (2002) Molecular pathology and pathobiology of osteoarthritic cartilage. Cell Mol. Life Sci. 59, 5-18.   DOI
10 Birkedal-Hansen, H., Moore, W. G., Bodden, M. K., Windsor, L. J., Birkedal-Hansen, B., DeCarlo, A. and Engler, J. A. (1993) Matrix metalloproteinases: a review. Crit. Rev. Oral Biol. Med. 4, 197-250.
11 Manju, V. and Nalini, N. (2007) Protective role of luteolin in 1,2-dimethylhydrazine induced experimental colon carcinogenesis. Cell Biochem. Funct. 25, 189-194.   DOI   ScienceOn
12 Stanton, H., Rogerson, F. M. East, C. J., Golub, S. B., Lawlor, K. E., Meeker, C. T., Little, C. B., Last, K., Farmer, P. J., Campbell, I. K., Fourie, A. M. and Fosang, A. J. (2005) ADAMTS-5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature. 434, 648-652.   DOI   ScienceOn
13 Sun, G. B., Sun, X., Wang, M., Ye, J. X., Si, J. Y., Xu, H. B., Meng, X. B., Qin, M., Sun, J., Wang, H. W. and Sun, X. B. (2012) Oxidative stress suppression by luteolin-induced heme oxygenase-1 expression. Toxicol. Appl. Pharmacol. 265, 229-240.   DOI   ScienceOn
14 Yoshihara, Y., Nakamura, H. bata, K., Yamada, H., Hayakawa, T., Fujikawa, K. and Okada, Y. (2000) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann. Rheum. Dis. 59, 455-461.   DOI   ScienceOn
15 Little, C. B., Barai, A. Burkhardt, D., Smith, S. M., Fosang, A. J., Werb, Z., Shah, M. and Thompson, E. W. (2009) Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. 60, 3723-3733.   DOI
16 Loeser, R. F. (2006) Molecular mechanisms of cartilage destruction: mechanics, inflammatory mediators and aging collide. Arthritis Rheum. 54, 1357-1360.   DOI
17 Mankin, H. J. (1982) The response for articular cartilage to mechanical injury. J. Bone Joint Surg. Am. 64, 460-466.
18 Moon, P. D., Jeong, H. S., Chun, C. S. and Kim, H. M. (2011) Baekjeolyusin- tang and its active component berberine block the release of collagen and proteoglycan from IL-1$\beta$-stimulated rabbit cartilage and down-regulate matrix metalloproteinases in rabbit chondrocytes. Phytother. Res. 25, 844-850.   DOI   ScienceOn
19 Neuhold, L. A., Killar, L. Zhao, W., Sung, M. L., Warner, L., Kulik, J., Turner, J., Wu, W., Billinghurst, C., Meijers, T., Poole, A. R., Babij, P. and DeGennaro, L. J. (2001) Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J. Clin. Invest. 107, 35-44.   DOI   ScienceOn
20 Okada, Y., Shinmei, M., Tanaka, O., Naka, K., Kimura, A., Nakanishi, I., Bayliss, M.T., Iwata, K. and Nagase, H. (1992) Localization of matrix metalloproteinase 3 (stromelysin) in osteoarthritic cartilage and synovium. Lab. Invest. 66, 680-690.
21 Impellizzeri, D., Esposito, E., Paola, R. Di., Ahmad, A., Campolo, M., Pel, i A., Morittu, V. M., Britti, D. and Cuzzocrea, S. (2013) Palmitoylethanolamide and luteolin ameliorate development of arthritis caused by injection of collagen type II in mice. Arthritis Res.Ther. 15, R192.   DOI
22 Pantsulaia, I., Kalichman, L. and Kobyliansky, E. (2010) Association between radiographic hand osteoarthritis and RANKL, OPG and inflammatory markers. Osteoarthritis Cartilage 18, 1448-1453.   DOI
23 Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S. and Boyd, M. R. (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82, 1107-1112.   DOI
24 Hu, P. F., Chen, W. P., Tang, J. L., Bao, J. P. and Wu, L .D. (2011) Protective effects of berberine in an experimental rat osteoarthritis model. Phytother. Res. 25, 878-885.   DOI
25 Jo, H., Park, J. S., Kim, E. M., Jung, M. Y., Lee, S. H., Seong, S. C., Park, S. C., Kim, H. J. and Lee, M. C. (2003) The in vitro effects of dehydroepiandrosterone on human osteoarthritic chondrocytes. Osteoarthritis Cartilage 11, 585-594.   DOI   ScienceOn
26 Jung, H. A., Jin, S. E., Min, B. S., Kim, B. W. and Choi, J. S. (2012) Anti-inflammatory activity of Korean thistle Cirsium maackii and its major flavonoid, luteolin 5-O-glucoside. Food Chem. Toxicol. 50, 2171-2179.   DOI   ScienceOn
27 Kanyama, M., Kuboki, T. Kojima, S., Fujisawa, T., Hattori, T., Takigawa, M. and Yamashita, A. (2000) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids of patients with temporomandibular joint osteoarthritis. J. Orofac. Pain 14, 20-30.
28 Lee, J. H. and Han, Y. (2011) Antiarthritic effect of lonicerin on Candida albicans arthritis in mice. Arch. Pharm. Res. 34, 853-859.   DOI
29 Kobayashi, M., Squires, G. R., Mousa, A., Tanzer, M., Zukor, D. J., Antoniou, J., Feige, U. and Poole, A. R. (2005) Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage. Arthritis Rheum. 52, 128-135.   DOI   ScienceOn
30 Kullich, W., Fagerer, N. and Schwann, H. (2007) Effect of the NSAID nimesulide on the radical scavenger glutathione S-transferase in patients with osteoarthritis of the knee. Curr. Med. Res. Opin. 23, 1981-1986.   DOI
31 Lee, J. H. and Kim, G. H. (2010) Evaluation of antioxidant and inhibitory activities for different subclasses flavonoids on enzymes for rheumatoid arthritis. J. Food Sci. 75, H212-H217.   DOI
32 Lin, P. M., Chen, C. T. and Torzilli, P. A. (2004) Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage. Osteoarthritis Cartilage 12, 485-496.   DOI   ScienceOn
33 Blom, A. B., van Lent, P. L., Libregts, S., Holthuysen, A. E., van der Kraan, P. M., van Rooijen, N. and van den Berg, W. B. (2007) Crucial role of macrophages in matrix metalloproteinase-mediated cartilage destruction during experimental osteoarthritis: involvement of matrix metalloproteinase-3. Arthritis Rheum. 56, 147-157.   DOI   ScienceOn
34 Bonnet, C. S. and Walsh, D. A. (2005) Osteoarthritis, angiogenesis and inflammation. Rheumatology (Oxford) 44, 7-16.   DOI
35 Burrage, P. S., Mix, K. S. and Brinckerhoff, C. E. (2006) Matrix metalloproteinases: role in arthritis. Front. Biosci. 11, 529-543.   DOI   ScienceOn
36 Goldring, M. B., Otero, M., Tsuchimochi, K., Ijiri, K. and Li, Y. (2008) Defining the roles of inflammatory and anabolic cytokines in cartilage metabolism. Ann. Rheum. Dis. 67(Suppl 3), iii75-iii82.
37 Shibakawa, A., Aoki, H., Masuko-Hongo, K., Kato, T., Tanaka, M., Nishioka, K. and Nakamura, H. (2003) Presence of pannus-like tissue on osteoarthritic cartilage and its histological character. Osteoarthritis Cartilage 11, 133-140.   DOI
38 Lijnen, H. R. (2002) Matrix metalloproteinases and cellular fibrinolytic activity. Biochemistry (Mosc) 67, 92-98.   DOI
39 Moncada-Pazos, A., Obaya, A. J., Viloria, C. G., Lopez-Otin, C. and Cal, S. (2011) The nutraceutical flavonoid luteolin inhibits ADAMTS- 4 and ADAMTS-5 aggrecanase activities. J. Mol. Med (Berl). 89, 611-619.   DOI