• Title/Summary/Keyword: lumped-system approach

Search Result 40, Processing Time 0.024 seconds

Rotor Dynamics Analysis of a Spindle System for a High speed Grinding Machine (고속 연삭기 주축 시스템의 회전체 역학 해석)

  • 최영휴
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.714-719
    • /
    • 2000
  • This paper describes a transfer matrix approach to analyze the dynamics of a high sped flexible rotor system supported at 2 positions by five ceramic bearings. The rotor system is modelled as lumped parameters in which many factors are considered not only lumped inertia or mass, bending moment, shear force but also gyroscopic effect and unbalance. The equation of motion is derived in the transfer matrix form, from which the eigenvalues equation is also derived. The transfer natural frequencies and modes. The eigenvalues, eigenmodes, campbell diagram, whirling critical speed, whirling modes, and the response of unbalance are calculated and discussed.

  • PDF

Systemic Simulation Models for the Theoretical Analysis of Human Cardiovascular System (인체 심혈관계의 이론적 분석을 위한 시스템 시뮬레이션모델에 관한 연구)

  • Ko Hyung Jong;Youn Chan Hyun;Shim Eun Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1181-1188
    • /
    • 2004
  • This paper reviews the main aspects of cardiovascular system dynamics with emphasis on modeling hemodynamic characteristics using a lumped parameter approach. Methodological and physiological aspects of the circulation dynamics are summarized with the help of existing mathematical models: The main characteristics of the hemodynamic elements, such as the heart and arterial and venous systems, are first described. Lumped models of micro-circulation and pulmonary circulation are introduced. We also discuss the feedback control of cardiovascular system. The control pathways that participate in feedback mechanisms (baroreceptors and cardiopulmonary receptors) are described to explain the interaction between hemodynamics and autonomic nerve control in the circulation. Based on a set-point model, the computational aspects of reflex control are explained. In final chapter we present the present research trend in this field and discuss the future studies of cardiovascular system modeling.

Adaptive second-order nonsingular terminal sliding mode power-level control for nuclear power plants

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1644-1651
    • /
    • 2022
  • This paper focuses on the power-level control of nuclear power plants (NPPs) in the presence of lumped disturbances. An adaptive second-order nonsingular terminal sliding mode control (ASONTSMC) scheme is proposed by resorting to the second-order nonsingular terminal sliding mode. The pre-existing mathematical model of the nuclear reactor system is firstly described based on point-reactor kinetics equations with six delayed neutron groups. Then, a second-order sliding mode control approach is proposed by integrating a proportional-derivative sliding mode (PDSM) manifold with a nonsingular terminal sliding mode (NTSM) manifold. An adaptive mechanism is designed to estimate the unknown upper bound of a lumped uncertain term that is composed of lumped disturbances and system states real-timely. The estimated values are then added to the controller, resulting in the control system capable of compensating the adverse effects of the lumped disturbances efficiently. Since the sign function is contained in the first time derivative of the real control law, the continuous input signal is obtained after integration so that the chattering effects of the conventional sliding mode control are suppressed. The robust stability of the overall control system is demonstrated through Lyapunov stability theory. Finally, the proposed control scheme is validated through simulations and comparisons with a proportional-integral-derivative (PID) controller, a super twisting sliding mode controller (STSMC), and a disturbance observer-based adaptive sliding mode controller (DO-ASMC).

Dynamic Analysis of Linear Oscillatory Actuator for Stirling Refrigerator (스털링 냉동기용 리니어 왕복 액추에이터의 동특성 해석)

  • Jeong, S.S.;Yoon, I.K.;Jang, S.M.;Park, S.J.;Hong, Y.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.673-675
    • /
    • 2002
  • In this paper. the lumped electrical circuit approach of mass/spring system is used to model the mechanical aspects according to the frequency. Therefore, the mass/spring system can be dealt with here and linked with the equivalent circuit of electric linear oscillatory actuator(LOA). Analysis models are double-coil type linear compressor for stirling refrigerator. The compressor consists of the moving coil LOA, piston, and spring. The electro-mechanical system with mass and spring can be represented using the lumped electrical circuit. We present the system impedance and dynamics of moving coil linear compressor.

  • PDF

Integrated Roll-Pitch-Yaw Autopilot via Equivalent Based Sliding Mode Control for Uncertain Nonlinear Time-Varying Missile

  • AWAD, Ahmed;WANG, Haoping
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.688-696
    • /
    • 2017
  • This paper presents an integrated roll-pitch-yaw autopilot using an equivalent based sliding mode control for skid-to-turn nonlinear time-varying missile system with lumped disturbances in its six-equations of motion. The considered missile model are developed to integrate the model uncertainties, external disturbances, and parameters perturbation as lumped disturbances. Moreover, it considers the coupling effect between channels, the variation of missile velocity and parameters, and the aerodynamics nonlinearity. The presented approach is employed to achieve a good tracking performance with robustness in all missile channels simultaneously during the entire flight envelope without demand of accurate modeling or output derivative to avoid the noise existence in the real missile system. The proposed autopilot consisting of a two-loop structure, controls pitch and yaw accelerations, and stabilizes the roll angle simultaneously. The Closed loop stability is studied. Numerical simulation is provided to evaluate performance of the suggested autopilot and to compare it with an existing autopilot in the literature concerning the robustness against the lumped disturbances, and the aforesaid considerations. Finally, the proposed autopilot is integrated in a six degree of freedom flight simulation model to evaluate it with several target scenarios, and the results are shown.

Determination of Vibration Parameters Using The Improved Time Domain Modal Identification Algorithm (개선된 시간영역 해석기법에 의한 동특성 추정)

  • Jung, Beom-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.147-154
    • /
    • 1999
  • A new approach to conducting the vibration parameters identification algorithm is proposed. The approach employs the concept of modal amplitude ratio implemented in a mode shape estimation. The accuracy of the improved Ibrahim Time Domain identification algorithm in extracting structural modal parameters from free response functions has been studied using computer simulated data for 9 stations on the two-span continuous beam. Simulated responses from the lumped and distributed parameter system demonstrate that this algorithm produces excellent results, even in the 300% noise response.

  • PDF

Development of a Dynamic Model for Water Quality Simulation during Unsteady Flow in Water Distribution Networks (부정류 흐름에서 상수관망 수질해석을 위한 동역학적 모형의 개발)

  • Choi, Doo-Yong;Cho, Won-cheol;Kim, Do-Hwan;Bae, Cheol-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.609-617
    • /
    • 2012
  • A dynamic water quality model is presented in order to simulate water quality under slowly varying flow conditions over time. To improve numerical accuracy, the proposed model uses a lumped system approach instead of extended period simulation, unlike the other available models. This approach can achieve computational efficiency by assuming liquid and pipe walls to be rigid, unlike the method of characteristics, which has been successfully implemented in rapidly varying flows. The discrete volume method is applied to resolve the advection and reaction terms of the transport equation for water quality constituents in pipes. Numerical applications are implemented to the pipe network examples under steady and unsteady conditions as well as hydraulic and water quality simulations. The numerical results are compared with EPANET2, which is a widely used simulation model for a water distribution system. The model results are in good agreement with EPANET2 for steady-state simulation. However, the hydraulic simulation results under unsteady flows differ from those of EPANET2, which causes a deviation in water quality prediction. The proposed model is expected to be a component of an integrated operation model for a water distribution system if it is combined with a computational model for rapidly varying flows to estimate leakage, pipe roughness, and intensive water quality.

Design of Automobile Exhaust System using a Top-Down Approach Design Methodology (상하향식 설계법을 이용한 자동차 배기시스템의 설계)

  • 고병갑;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.13-27
    • /
    • 1997
  • In the modern design technology, a component should be designed to fit into the overall system performance. A design methodology is developed to expedite the mechan- ical design of complex mechanical systems, The relation between the system design and component design is defined by a top-down approach and the results from the system design are utilized in the component design process. As a design example, an automobile exhaust system is selected for the system design and a bellows is chosen for a component design. Design methodology based on the top-down approach consists of five steps; (1) Analysis of service load, (2) Development of a lumped parameter, (3) Completion of the system design, (4) Selection of the component topology, (5) Completion of the component design, A method using a equivalent matrix is developed in order to determine unknown external forces in linear structural analyses. The bellows is also analyzed by the finite element method using a conical frustum shell element. Various experiments are performed to verify the developed theories. The top-down desi- gn approach is demonstrated by a design case using structural and shape optimization technology. Since the method is relatively simple and easy compared to other methods, it can be applied to the general design where system and component designs are involves simultaneously.

  • PDF

Theoretical Approach; Identification of Dynamic Characteristics for Lumped Mass Beam Model due to Changes of Mass (질량 변화에 따른 Lumped Mass Beam Model의 이론적 동특성 규명)

  • Fawazi, Noor;Yoon, Ji-Hyeon;Kang, Kwi-Hyun;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.389-392
    • /
    • 2008
  • This paper predicts the changes of natural frequencies due to the changes of mass at different point mass stations by using iterative calculation Transfer Matrices Method for different boundary conditions of a single beam structure (fixed-free and fixed-fixed beam). Firstly, the first three natural frequencies of an original beam are obtained using Transfer Matrices Method to verify the accuracy of the obtained results. The results are then compared with the exact solutions before purposely changing the parameter of mass. Both beams are modeled as discrete continuous systems with six-lumped-mass system. A single beam is broken down into a point mass and a massless beam which represent a single station and expressed in matrix form. The assembled matrices are used to determine the value of natural frequencies using numerical interpolation method corresponding to their mode number by manipulating some elements in the assembled matrix.

  • PDF

Droplet Ejection and Experimental Study on the Application of Industrial Inkjet Printhead (산업용 잉크젯 프린트헤드 액적 토출현상의 실험적 해석)

  • Park, Sung-Jun
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.34-40
    • /
    • 2011
  • In this paper, a hybrid design tool combining one-dimensional(1D) lumped model and three-dimensional computational fluid dynamics(CFD) approach has been developed in order to evaluate the performance of inkjet print head and droplet control process are studied to reduce the deviations between nozzles which affect the size of the printed line for the industrial application of direct writing on printed circuit boards(PCB). 1D lumped model analysis shows that it is useful tool for evaluating performance of an inkjet head by varying the design parameters. The differences in ejected volume and droplet velocity between analytical and experimental result are within 12%. Time sequence of droplet generation is verified by the comparison between 3D analysis result and photographic images acquired by stroboscopic technique. In addition, by applying DPN process, velocity and volume uniformity between nozzles is dramatically improved that the tolerance achieved by the piezoelectric inkjet printhead across the 64 nozzles is 5 to 8%. A printed line pattern is successfully obtained using the fabricated inkjet print head and droplet calibration system.

  • PDF