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ABSTRACT 
 

This paper predicts the changes of natural frequencies due to the changes of mass at different point mass stations by using 
iterative calculation Transfer Matrices Method for different boundary conditions of a single beam structure (fixed-free and 
fixed-fixed beam). Firstly, the first three natural frequencies of an original beam are obtained using Transfer Matrices Method to 
verify the accuracy of the obtained results. The results are then compared with the exact solutions before purposely changing 
the parameter of mass. Both beams are modeled as discrete continuous systems with six-lumped-mass system. A single beam is 
broken down into a point mass and a massless beam which represent a single station and expressed in matrix form. The 
assembled matrices are used to determine the value of natural frequencies using numerical interpolation method corresponding 
to their mode number by manipulating some elements in the assembled matrix.

1. Introduction 

The mass, stiffness, and damping properties of a structure 
determine its dynamic characteristics in term of natural 
frequencies and their corresponding modes. Structural 
modification is the process whereby desired dynamic 
behavior is obtained by changing the parameter of mass, 
stiffness or damping properties. In this paper, the dynamic 
characteristics of a single beam are changed by simply 
adding more, and removing the existing mass element at 
different point mass station by considering the two different 
boundary conditions of a single beam structure (fixed-free 
and fixed-fixed beam) 

Jung-Youn Lee )1( investigated the changes of dynamic 
characteristics of a gamma-shaped-beam-element-structure 
by using Transfer Matrices Method and compared the 
obtained result through experiment. In the following years, 

Jung-Youn Lee )2( proposed a numerical calculation method 
by considering the amount of change of generalized mass 
based on variation of lumped masses to predict the new 
dynamic characteristics of a single fixed-free beam due to 
mass modification. These researches explained that, by 
considering the changes of parameter of the original 
structure, the new dynamic characteristics in term of natural 
frequencies can be predicted. By detailed mathematical 
understanding of the shifting natural frequencies of a 
structure due to structure modification, we are able to 
design a structure based on certain dynamic characteristic 

requirements. For example, Dmitri )3( had proposed a 
numerical calculation method to design a mechanical 
structure based on certain dynamic characteristics by 
changing the mass and stiffness of the original structure 
which led to achieve the desired natural frequencies.  

Examples given above describe the application of 
changing some parameter of a structure and the methods 
used to predict the new dynamic characteristics due to its 
structure modification. However, none of them considered 
the most optimal location where the mass of the structure 
can be modified. In real application, some structural 
modification requires the changes of mass of original 
structure but at less modified point. In this paper, as a 
preliminary study, two boundary conditions of beams are 
considered and a single beam is divided into six stations 
which consist of point mass and massless beam. Each mass 
of point masses is purposely increased and reduced in order 
to investigate how this mass parameter modification at 
different point mass influences the dynamic characteristics 
of the beam.  

2. Theory 

As mentioned earlier, a single beam can be expressed as 
lumped mass model which consists of a number of stations. 
Each station is a combination of a point mass and massless 
beam. Figure 1 shows a single beam which is modeled as 6 
lumped mass model. 

 
Fig. 1.Six Lumped Mass Beam Model 
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The total mass of the beam is equally distributed in the 
lumped mass beam model. Considering the free body 
diagram, slope and deflection of both elements, 4-by-4 
matrices can be formed as presented in eq. (1) ,(2),and(3). 

 
Massless Beam Matrix(0-1) 
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Point Mass Matrix(1-2) 
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Massless Beam Matrix(2-3) 
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Thus, the total matrix of a single station of point mass and 
two half massless beam can be represented by substituting 
eq.(1)and (2) into eq.(3) which yield a new matrix as below, 
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                                         (4) 
  
The above matrix represents a single lumped mass model 
and the number of above matrix can be considered as the 
number of degree of freedom. The square matrix in above 
assembled matrix is called the transfer matrix as state vector 
at 0 is transferred to the state vector at 3 through this matrix. 
Thus, it is possible to progress through the structure so that 
the state vector at the far end is related to the state vector at 
the starting end. 

 By taking above matrix as an example, the natural 
frequency of a single lumped mass beam model can be 
obtained by multiplying a number of matrix elements by 
considering the boundary condition of the beam. 
Considering the boundary condition of fixed-free beam ,the 
determinant of square matrix of element (3,3),(3,4),(4,3) 
and (4,4) will produce the predicted natural frequency. 
While, for fixed-fixed beam, the natural frequency can be 
obtained through the determinant of element 
(1,3),(1,4),(2,3) and (2,4). The determinant for each cases 
produces a second degree polynomial function and the real 
positive root of the function is the value of the natural 
frequency. 

By applying the same approach, 6 lumped mass beam 

model can be expressed as a single transfer matrix by 
assembling previous matrices. As the obtained matrix 
consists of complicated numerical figures, numerical 
interpolation method is used to determine the natural 
frequencies corresponding to their mode numbers for both 
different boundary conditions of beams. 

3. Numerical Calculation Result 

3.1 Lumped Mass Model Numerical Calculation 
Result 

 
Before modifying the parameter of mass in each point 

mass, the obtained natural frequencies are firstly compared 
with the exact solution. Table 1 shows the properties of 
beam that used in this numerical calculation. 
 

Beam properties (Aluminum) 
Elastic Modulus Pa91070 ×  
Moment of inertia 4101013.2 m−×  

Density 
32700 m

kg  

Area 24106.1 m−×  

Length m3.0  

Mass kg1296.0  

Table 1.Properties of Beam 
 
The obtained natural frequencies using iterative 

calculation transfer matrix method are then compared with 
the exact solutions. Table 3 and table 4 show the obtained 
results for fixed-free and fixed-fixed beam using Transfer 
Matrices Method which are compared with the exact 
solution. 

 
Natural 
Frequency 

Exact 
Solution(Hz) 

3lumped 
mass(Hz) 

4lumped 
mass(Hz) 

First 36.524 37.48(1.026) 37.05(1.014) 
Second 228.92 251.14(1.097) 240.84(1.052) 
Third 640.972 807.17(1.259) 688.95(1.074) 
 

Natural 
Frequency 

5lumped 
mass(Hz) 

6lumped 
mass(Hz) 

First 36.86(1.009) 36.76(1.006) 
Second 236.41(1.033) 234.07(1.02) 
Third 673.56(1.05) 663.92(1.03) 

Table 2.Natural Frequencies of the Original Beam  
(Fixed-Free Beam) 

 
 
 
 
 
 
 
 

(1) 

(2) 

(3) 
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Natural 
Frequency 

Exact 
Solution(Hz) 

3lumped 
mass(Hz) 

4lumped 
mass(Hz) 

First 232.436 232.896(1.002) 232.633(1.001) 
Second 640.719 717.788(1.12) 640.068(0.999) 
Third 1256.067 900.639(0.717) 1384.18(1.101) 

 
Natural 
Frequency 

5lumped 
mass(Hz) 

6lumped 
mass(Hz) 

First 232.366(0.9997) 232.366(0.9997) 
Second 639.802(0.999) 640.068(0.999) 
Third 1240.347(0.987) 1248.776(0.994) 

Table 3.Natural Frequencies of the Original Beam  
(Fixed-Fixed Beam) 

 
The number in the bracket represents the ratio of natural 

frequencies obtained from Transfer Matrices Method and 
exact solution. It is obvious to conclude that, as the number 
of lumped mass increase, the obtained natural frequencies 
approach the exact solution but as the number of mode 
increase, the rate of change gradually increase but still can 
be considered accurate as in the calculation of natural 
frequencies for infinite number of lumped mass, the first 
few obtained natural frequencies are reliable. Thus, the 
applied transfer matrix method is reliable to determine the 
value of natural frequencies which is then used to predict 
the dynamic behavior of fixed-free and fixed-fixed beam 
due to changes of mass. 

3.2 Numerical Calculation Result due to Changes of 
Mass (fixed-free beam) 

 
In this six-lumped-mass beam model, the total mass of 

beam is equally distributed. In order to investigate the 
optimal station that mostly influences the value of natural 
frequency, four different points are selected and 25%,50% 
and 75% of the original mass of the respective point mass 
are purposely added and reduced accordingly.   

Figure 2 and figure 3 show the percentage rate of change 
for the first three natural frequencies for fixed-free beam at 
different station due to mass increment and mass reduction 
at different station respectively. Each station represents the 
right end and left end (m1 and m6) location of the beam 
while the other two represent the central station of the beam 
(m3 and m4).  

Theoretically, it is known as the masses increase, the 
natural frequencies decrease and vice versa. In this study, 
the mass is purposely changed at different station to 
determine the most influenced station that will affect the 
value of natural frequencies. From the obtained result, it is 
clear, as the modified mass station moves away from the 
fixed-part of the beam, the percentage rate of change of the 
natural frequencies increased gradually. Thus, the changes 
of mass at the right end free part of the beam produce the 
highest percentage rate for fixed-free beam. 

Mode number

Mode number

Mode number

Pe
rc

en
ta

ge
 R

at
e 

of
  C

ha
ng

e
Pe

rc
en

ta
ge

 R
at

e 
of

  C
ha

ng
e

Pe
rc

en
ta

ge
 R

at
e 

of
  C

ha
ng

e
Pe

rc
en

ta
ge

 R
at

e 
of

  C
ha

ng
e

 
Fig. 2. Percentage Rate of Change (natural frequencies) due 

to Mass Increment 
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Fig. 3.Percentage Rate of Change (natural frequencies) due 

to Mass Decrement 
 

3.3 Numerical Calculation Result due to Changes of 
Mass (fixed-fixed beam) 

 
The boundary condition of a beam structure is also a 

factor that influences the percentage rate of change of 
natural frequencies. Figure 4 and figure 5 show the 
percentage rate of change for the first three natural 
frequencies for fixed-fixed beam at different station due to 
mass increment and mass reduction at different station 
respectively. 
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Fig. 4.Percentage Rate of Change (natural frequencies) due 

to Mass Increment 
 

For fixed-fixed beam, the mass is purposely modified at 
the same station as done on fixed-free beam. Due to its 
boundary condition, the pattern of changing percentage rate 
at different modified mass locations is different compared to 
fixed-free case. It can be clearly seen, the percentage rates 
of change are high when the mass is modified at the central 
station of the beam and approximately low at the near fixed-
part of the beam. In addition, the percentage rate is exactly 
similar at station m3 and m4 due to their location at the 
center of beam.  
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Fig. 5.Percentage Rate of Change (natural frequencies) due to 
Mass Decrement 

 
 
 

4. Conclusion 

The conclusions for this study can be drawn as follow 
 

(1) The changes of natural frequencies are more 
influenced by the boundary condition of beam 
compared to the changes of mass. But at the same 
time ,the changes of natural frequencies are more 
influenced by the decrement of mass than the 
increment of mass. 

(2) For fix-free beam, the changes of natural 
frequencies are more sensitive at free end part of 
beam and for fixed-fixed beam, the changes of 
natural frequencies are more sensitive at the center 
part of beam. 
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