Browse > Article
http://dx.doi.org/10.5302/J.ICROS.2004.10.12.1181

Systemic Simulation Models for the Theoretical Analysis of Human Cardiovascular System  

Ko Hyung Jong (금오공과대학교 기계공학부)
Youn Chan Hyun (한국정보통신대학교 공학부)
Shim Eun Bo (강원대학교 기계메카트로닉스공학부)
Publication Information
Journal of Institute of Control, Robotics and Systems / v.10, no.12, 2004 , pp. 1181-1188 More about this Journal
Abstract
This paper reviews the main aspects of cardiovascular system dynamics with emphasis on modeling hemodynamic characteristics using a lumped parameter approach. Methodological and physiological aspects of the circulation dynamics are summarized with the help of existing mathematical models: The main characteristics of the hemodynamic elements, such as the heart and arterial and venous systems, are first described. Lumped models of micro-circulation and pulmonary circulation are introduced. We also discuss the feedback control of cardiovascular system. The control pathways that participate in feedback mechanisms (baroreceptors and cardiopulmonary receptors) are described to explain the interaction between hemodynamics and autonomic nerve control in the circulation. Based on a set-point model, the computational aspects of reflex control are explained. In final chapter we present the present research trend in this field and discuss the future studies of cardiovascular system modeling.
Keywords
lumped parameter model; hemodynamics of the cardiovascular system; autonomic nerve control;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. H. Youn, B. S. Kim, D. S. Nam, E. S. An, B. H. Lee, E. B. Shim, and C. Gari, 'QoS Quorum-Constrained Resource Management in Wireless Grid,' Lecture Notes in Computer Science, vol. 3222, pp. 65-72, 2004
2 R. W. DeBoer and J. M. Karemaker and J. Strackee, 'Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat- to-beat model,' American Journal of Physiology. Heart and Circulatory Physiology, vol. 253(3 Pt 2), pp. H680-689, 1987
3 F. M. Melchior, R. S. Srinivasan and J. M. Clere, 'Mathematical modeling of human cardiovascular response to LBNP,' Physiologist, vol. 35(1 Suppl), pp. S204-205, 1994
4 M. Ursino, L. Coli, C. Brighenti, L. Chiari, A. de Pascalis and G. Avanzolini, 'Prediction of solute kinetics, acid-base status, and blood volume changes during profiled hemodialysis,' Annals of Biomedical Engineering, vol. 28(2), pp. 204-216, 2000   DOI   ScienceOn
5 E. B. Shim and R. D. Kamm, 'Numerical simulation of steady flow in a compliant tube or channel with tapered wall thickness,' Journal of Fluids and Structures, vol. 16(6), pp. 1009-1027, 2002   DOI   ScienceOn
6 J. D. Thomas, J. Zhou, N. Greenberg, G. Bibawy, P. M. McCarthy and P. M. Vandervoort, 'Physical and physiological determinants of pulmonary venous flow: numerical analysis,' American Journal of Physiology. Heart and Circulatory Physiology, vol. 272(5 Pt 2), pp. H2453-65, 1997
7 J. E. W. Beneken and B. DeWitt, 'A Physical Approach to Hemodynamic Aspects of the Human Cardiovascular System,' in Physical Bases of Circulatory Transport: Regulation and Exchange, Saunders: Philadelphia. pp. 1-45, 1967
8 M. F. Snyder and V. C. Rideout, 'Computer Simulation Studies of the Venous Circulation,' IEEE Transactions on Biomedical Engineering, vol. 16(4), pp. 325-334, 1969   DOI   ScienceOn
9 X. Y. Luo and T. J. Pedley, 'A numerical simulation of unsteady flow in a 2-D collapsible channel,' Journal of Fluid Mechanics, vol. 314: 191225, 1996
10 L. Coli, M. Bonomini, G. La Manna, V. Dalmast and M. Ursino, 'Clinical use of profiled hemodialysis,' Artificial Organs, vol. 22(9), pp. 724-30, 1998   DOI   ScienceOn
11 F. M. Melchior, R. S. Srinivasan, G. Ossard and J. M. Clere, 'A mathematical model of the cardiovascular response to +Gz acceleration,' Physiologist, vol. 36(1 Suppl), pp. S62-3, 1993
12 M. Ursino, L. Coli, C. Brighenti, L. Chiari, A. de Pascalis and G. Avanzolini, 'Prediction of solute kinetics, acid-base status, and blood volume changes during profiled hemodialysis,' Annals of Biomedical Engineering, vol. 28(2), pp. 204-216, 2000   DOI   ScienceOn
13 L. Coli, M. Ursino, A. De Pascalis, C. Brighenti, V. Dalmastri, G. La Manna, E. Isola, G. Cianciolo, D. Patrono, P. Boni and S. Stefoni, 'Evaluation of intradialytic solute and fluid kinetics. Setting Up a predictive mathematical model,' Blood Purification, vol. 18(1), pp. 37-49, 2000   DOI   ScienceOn
14 J. C. Stettler, P. Niederer and M. Anliker, 'Theoretical analysis of arterial hemodynamics including the influence of bifurcations. Part I: mathematical models and prediction of normal pulse patterns,' Annals of Biomedical Engineering. vol. 9(2), pp. 145-64, 1981   DOI
15 X. Xiao, E. T. Ozawa, Y. Huang and R. D. Kamm, 'Model-based assessment of cardiovascular health from noninvasive measurements,' Annals of Biomedical Engineering, vol. 30(5), pp. 612-23, 2002   DOI   ScienceOn
16 R. Braakman, P. Sipkema and N. Westerhof, 'A dynamic nonlinear lumped parameter model for skeletal muscle circulation,' Annals of Biomedical Engineering, vol. 17, pp. 593-616, 1989   DOI
17 R. J. White, D. G. Fitzjerrell and R. D. Croston, 'Fundamentals of Lumped Compartment Modelling of the Cardiovascular System,' in Advances Cardiovascular Physiology, Karger: Basel. pp. 162-184, 1983
18 V. C. Rideout and J. Katra, 'Computer simulation study of the pulmonary circulation,' Simulation, vol. 12, pp. 239-245, 1969   DOI
19 J. Z. Wang, B. Tie, Welkowitz W, Kostis J, Semmlow J, 'Incremental network analogue model of the coronary artery,' Medical & Biological Engineering & Computing, vol. 27(4), pp. 416-22, 1989   DOI
20 M. Zagzoule and J. P. Marc-Vergnes, 'A global mathematical model of the cerebral circulation in man,' Journal of Biomechanics, vol. 19, pp. 1015-1022, 1986   DOI   ScienceOn
21 A. C. Guyton, T. G. Coleman, Manning, Jr. Rd and Hall JE, 'Some problems and solutions for modeling overall cardiovascular regulation,' Mathematical Biosciences, vol. 72, pp. 141-155, 1984   DOI   ScienceOn
22 T. Kenner 'Physical and mathematical modeling in cardiovascular systems,' Quantitative Cardiovascular Studies, University Park: Baltimore, MD. pp. 41-109, 1979
23 T. L. Davis, 'Teaching Physiology Through Interactive Simulation of Hemodynamics,' MS Thesis in Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology: Cambridge, 1991
24 M. Ursino, 'A mathematical model of the carotid baroregulation in pulsating conditions,' IEEE Transactions on Biomedical Engineering, vol. 46(4), pp. 382-92, 1999   DOI   ScienceOn
25 H. Senzaki, C. H. Chen and D. Kass, 'Single-beat estimation of end-systolic pressure-volume relation in humans: a new method with the potential for non-invasive application,' Circulation vol. 94, pp. 2497-2506, 1996   DOI   ScienceOn
26 D. J. Burkhoff, C. Alexander and K. Schipke, 'Assessment of Windkessel as a model of aortic impedance,' American Journal of Physiology. Heart and Circulatory Physiology, vol. 255(24), pp. H742-H753, 1988
27 K. Campbell, M. Zeglen, T. Kagehiro and H. Rigas, 'A pulsatile cardiovascular model for teaching heart-blood vessel interaction,' Physiologist, vol. 25, pp. 155-162, 1982
28 T. L. Davis and R. G. Mark, 'Teaching Physiology Through Simulation of Hemodynamics,' Computers in Cardiology, vol. 17, pp. 34-37, 1990
29 M. Ursino, 'Interaction between carotid baroregulation and the pulsating heart: a mathematical model,' American Journal of Physiology. Heart and Circulatory Physiology, vol. vol. 275(5 Pt 2): p. H1733-47, 1998
30 M. Ursino and E. Magosso, 'Role of short-term cardiovascular regulation in heart period variability: a modeling study,' American Journal of Physiology. Heart and Circulatory Physiology, vol. 284(4), pp. H1479-93, 2003
31 F. M. Melchior, Srinivasan RS and Charles JB, 'Mathematical modeling of human cardiovascular system for simulation of orthostatic response,' American Journal of Physiology. Heart and Circulatory Physiology, vol. 262(6 Pt 2): H1920-33, 1992
32 I. Mirsky, 'Elastic Properties of the Myocardium: A quantitative approach with physiological and clinical applications,' Handbook of Physiology (The Cardiovascular System), R.M. Berne, Editor. American Physiological Society: Bethesda. 497-431, 1979
33 D. Jaron, D. W. Moore and C. L. Chu, 'Cardiovascular model for studying impairment of cerebral function during +Gz stress,' Aviation, Space, and Environmental Medicine, vol. 55, pp. 24-31, 1984
34 L. J. Dell'Italia and R. A. Walsh, 'Application of a time varying elastance model of right ventricular performance in man,' Cardiovascular Research, vol. 22, pp. 864-874, 1988   DOI   ScienceOn
35 T. Heldt, E. B. Shim, R. D. Kamm and R. G. Mark, 'Computational modeling of cardiovascular response to orthostatic stress,' Journal of Applied Physiology, vol. 92(3), pp. 1239-54, 2002   DOI   ScienceOn
36 E. B. Shim, T. Heldt, R. D. Kamm, R. G. Mark and C. H. Youn, 'Computational Modeling of the Cardiovascular System After Fontan Procedure,' Lecture Notes in Computer Science, vol. 2526, pp. 105-114, 2002
37 K. Campbell, M. Zeglen, T. Kagehiro and H. Rigas, 'A pulsatile cardiovascular computer model for teaching heart-blood vessel interaction,' Physiologist, vol. 25(3), pp. 155-62, 1982
38 K. Sunagawa and K. Sagawa, 'Models of ventricular contraction based on time-varying elastance,' Critical Reviews in Biomedical Engineering, vol. 7(3), pp. 193-228, 1982
39 T. Masuzawa, Y. Fukui and N. Y. Smith, 'Cardiovascular simulation using a multiple modeling method on a digital computer-simulation of interaction between the cardiovascular system and angiotensin II,' Journal of Clinical Monitoring, vol. 8(1), pp. 50-58, 1992   DOI
40 G. N. Jager, N. Westerhof and A. Noordergraaf, 'Oscillatory flow impedance in electrical analog of arterial system: representation of sleeve effect and non-Newtonian properties of blood,' Circulation Research, vol. 16, pp. 121-133, 1965   DOI   ScienceOn
41 E. Magosso and M. Ursino, 'Modelling study of the acute cardiovascular response to hypocapnic hypoxia in healthy and anaemic subjects,' Medical & Biological Engineering & Computing, 42(2), pp. 158-66, 2004   DOI   ScienceOn
42 G. Porenta, D. F. Young and D. R. Rogge, 'A finite element model of blood flow in arteries including taper, branches, and obstructions,' Journal of Biomechanics, vol. 108, pp. 161-167, 1986   DOI   ScienceOn
43 X. Li, J. Bai, S. Cui and S. Wang, 'Simulation study of the cardiovascular functional status in hypertensive situation,' Medical & Biological Engineering & Computing, vol. 32(5), pp. 345-62, 2002   DOI   ScienceOn
44 W. Schreiner, F. Neumann and W. Mohl, 'Simulation of coronary circulation with special regard to the venous bed and coronary sinus occlusion,' Journal of Biomedical Engineering, 12(5), pp. 429-43, 1990   DOI
45 M. Ursino and E. Magosso, G. Avanzolini, 'An integrated model of the human ventilatory control system: the response to hypoxia,' Clinical Physiology, vol. 21(4), pp. 465-77, 2001   DOI   ScienceOn
46 J. Y. Kresh, M. Fox, S. K. Brockman and A. Noordergraaf, 'Model-based analysis of transmural vessel impedance and myocardial circulation dynamics,' American Journal of Physiology. Heart and Circulatory Physiology, vol. 258(1 Pt 2), pp. H262-76, 1990
47 R. C. Croston, J. A. Rummel, and F. J. Kay, 'Computer model of cardiovascular control system responses to exercise,' Journal of Dynamic Systems, Measurement, and Control, vol. 95, pp. 301-307, 1973   DOI
48 T. Ejaz, T. Takemae, Y. Kosugi and M. Hongo, 'The high zero-flow pressure phenomenonin coronary circulation: a simulation study,' Frontiers of Medical and Biological Engineering, vol. 11(4), pp. 335-40, 2002   DOI   ScienceOn
49 D. G. Boyers, J. G. Cuthbertson and J. A. Leutscher, 'Simulation of the human cardiovascular system: a model with normal responses to change of posture, blood loss, transfusion, and autonomic blockade,' Simulation, vol. 18, pp. 197-205, 1972   DOI   ScienceOn
50 M. Ursino, 'Interaction between carotid baroregulation and the pulsating heart: a mathematical model,' American Journal of Physiology. Heart and Circulatory Physiology, vol. 275(5 Pt 2), pp. H1733-47, 1988
51 V. K. Sud and G. S. Sekhon, 'Analysis of blood flow through a model of the human arterial system under periodic body acceleration,' Journal of Biomechanics, vol. 19, pp. 929-941, 1986   DOI   ScienceOn
52 H. H. Hardy, R. E. Collins and R. E. Calvert, 'A digital computer model of the human circulatory system,' Medical & Biological Engineering & Computing, vol. 20, pp. 550-564, 1982   DOI
53 J. R. LaCourse, G. Mohankrishnan and K. Sivaprasad, 'Simulations of arterial pressure pulses using a transmission model,' Journal of Biomechanics, vol. 19, pp. 771-780, 1986   DOI   ScienceOn
54 E. O. Attinger and A. Anne, 'Simulation of the cardiovascular system,' Annals of the New York Academy of Sciences, vol. 128, pp. 810-829, 1966   DOI
55 A. P. Avolio, 'Multi-branched model of the human arterial system,' Medical & Biological Engineering & Computing, vol. 18, pp. 709-718, 1980   DOI
56 J. Dagen, 'Pulsatile mechanical and mathematical model of the cardiovascular system,' Medical & Biological Engineering & Computing, 20: 601-607, 1982   DOI
57 F. S. Grodins, 'Integrative cardiovascular physiology: Amathematical synthesis of cardiac and blood vessel hemodynamics,' Quarterly Review of Biology, vol. 34(2), pp. 93-116, 1959   DOI   ScienceOn