• Title/Summary/Keyword: lumped parameter analysis

Search Result 127, Processing Time 0.021 seconds

A Proposed Reduction Method for Vibatiton Analysis of Automobile Engine Crakshfts (자동차 엔진 크랭크축의 진동해석을 위한 자유도 저감법 개발에 관한 연구)

  • 최명진
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.2
    • /
    • pp.29-37
    • /
    • 1996
  • High speed engines with high power are increasingly on demands and almost engines employ crankshafts Such problems as bending and torsional vibrations become the point at issue in crankshaft analysis and design. In this study to overcome the diffiiculty with the large amount of computation in finite element vibration analysis of a crankshaft, a reduction method based on influence coefficient and lumped parameter is presented. which reduces the computation amount effectively and can be used in vibrational analysis and design of any types of crankshafts Crank journal and pinparts are meodelled as elements with 6degrees of freedom per node. Crank web part is modelled using equivalent mass and stiffness matices . based up on lumped parameter and influence coefficient respectively to reduce total degrees of freedom considerablely. To confirm the scheme of the study the results are compared with the known data and they are coincident. Also a simple crankshaft is designed and manufactured for experiments. The calculated results using reduction method and the experimental results agree well The scheme of this study can be utilized in evaluation results agree well. The calculated result are compared with the known data and they are coincident. Also a simple crankshaft is designed and manufactured for experiments. The calculated results using reduction method and the experimental results agree well. The scheme of this study can be utilized in evaluation and development of high speed engine.

  • PDF

Systemic Simulation Models for the Theoretical Analysis of Human Cardiovascular System (인체 심혈관계의 이론적 분석을 위한 시스템 시뮬레이션모델에 관한 연구)

  • Ko Hyung Jong;Youn Chan Hyun;Shim Eun Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1181-1188
    • /
    • 2004
  • This paper reviews the main aspects of cardiovascular system dynamics with emphasis on modeling hemodynamic characteristics using a lumped parameter approach. Methodological and physiological aspects of the circulation dynamics are summarized with the help of existing mathematical models: The main characteristics of the hemodynamic elements, such as the heart and arterial and venous systems, are first described. Lumped models of micro-circulation and pulmonary circulation are introduced. We also discuss the feedback control of cardiovascular system. The control pathways that participate in feedback mechanisms (baroreceptors and cardiopulmonary receptors) are described to explain the interaction between hemodynamics and autonomic nerve control in the circulation. Based on a set-point model, the computational aspects of reflex control are explained. In final chapter we present the present research trend in this field and discuss the future studies of cardiovascular system modeling.

MODELING AND PARAMETER IDENTIFICATION FOR A PASSIVE HYDRAULIC MOUNT

  • Zhang, Y.X.;Zhang, J.W.;Shangguan, W.B.;Feng, Q.Sh.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.233-241
    • /
    • 2007
  • A lumped parameter model is proposed for the analysis of dynamic behaviour of a Passive Hydraulic Engine Mount (PHEM), incorporating inertia track and throttle, which is characterized by effective and efficient vibration isolation behaviour in the range of both low and high frequencies. Most of the model parameters, including volume compliance of the throttle chamber, effective piston area, fluid inertia and resistance of inertia track and throttle are identified by an experimental approach. Numerical predictions are obtained through a finite element method for responses of dynamic stiffness of the rubber spring. The experiments are made for the purpose of PHEM validation. Comparison of numerical results with experimental observations has shown that the present PHEM achieves good performance for vibration isolation.

Computational Analysis of Three-Dimensional Flow in PMD igniter (착화기 3차원 유동의 전산 해석 연구)

  • Kim, Yong-chan;Yang, Hee Won;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.416-417
    • /
    • 2017
  • In this study, Three-Dimensional igniter modeling and computational Analysis for PMD internal flow analysis have been conducted. The igniter modeling used the lumped parameter method and the computational analysis has been performed in conjunction with the commercial program STAR-CCM+. The result of computational analysis has been compared with those of CBT and PMD experiments.

  • PDF

Thermal Analysis of High Speed Induction Motor by Using Lumped-Circuit Parameters

  • Han, Pil-Wan;Choi, Jae-Hak;Kim, Dong-Jun;Chun, Yon-Do;Bang, Deok-Je
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2040-2045
    • /
    • 2015
  • This paper deals with the electromagnetic and thermal analysis of high speed induction motor. The induction motor is analyzed by time-varying magnetic finite element method and its thermal analysis is carried out by using analytical lumped-circuit method. Analysis results are compared with the experiment of 29kW high speed motor prototype at 12,000rpm.

Lumped-Parameter Thermal Analysis and Experimental Validation of Interior IPMSM for Electric Vehicle

  • Chen, Qixu;Zou, Zhongyue
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2276-2283
    • /
    • 2018
  • A 50kW-4000rpm interior permanent magnet synchronous machine (IPMSM) applied to the high-performance electric vehicle (EV) is introduced in this paper. The main work of this paper is that a 2-D T-type lumped-parameter thermal network (LPTN) model is presented for IPMSM temperature rise calculation. Thermal conductance matrix equation is generated based on calculated thermal resistance and loss. Thus the temperature of each node is obtained by solving thermal conductance matrix. Then a 3-D liquid-solid coupling model is built to compare with the 2-D T-type LPTN model. Finally, an experimental platform is established to verify the above-mentioned methods, which obtains the measured efficiency map and current wave at rated load case and overload case. Thermocouple PTC100 is used to measure the temperature of the stator winding and iron core, and the FLUKE infrared-thermal-imager is applied to measure the surface temperature of IPMSM and controller. Test results show that the 2-D T-type LPTN model have a high accuracy to predict each part temperature.

Effect of Axial-Layered Permanent-Magnet on Operating Temperature in Outer Rotor Machine

  • Luu, Phuong Thi;Lee, Ji-Young;Kim, Ji-Won;Chun, Yon-Do;Oh, Hong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2329-2334
    • /
    • 2018
  • This paper discusses the thermal effect of the number of permanent-magnet (PM) layers in an outer rotor machine. Depending on the number of axial-layer of PM, the operating temperature is compared analytically and experimentally. The electromagnetic analysis is performed using 3-dimensional time varying finite element method to get the heat sources depending on axial-layered PM models. Then thermal analysis is conducted using the lumped-parameter-thermal-network method for each case. Two outer rotor machines, which have the different number of axial-layer of PM, are manufactured and tested to validate the analysis results.

Shock Response Analysis of the Optical Disk Drive in Consideration of Disk and Pick up (디스크와 픽업을 고려한 광디스크 드라이브의 충격응답해석)

  • Shin, Eun-Jung;Chang, Young-Bae;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1261-1267
    • /
    • 2004
  • As the optical disk drives are designed for portable and hostile environment, they have a possibility to miss the track and not to read the data. The shock response of optical disk drives must be analyzed. This research shows the shock response analysis of the optical disk drive. The optical disk drive is modeled as the lumped parameter system in consideration of the pickup and the disk. The lumped parameter model is compared with finite element model in order to verify results. Finally, shock responses are compared with the change of the shock magnitude and the duration.

Characteristic Analysis of Capacitor-Run Single Phase Inuction Motor by Equivalent Circuit Coupled with Finite Element Method (유한요소법과 등가회로 해석의 결합에 의한 콘덴서 구동형 단상유도전동기의 특성해석)

  • Nam, Hyuk;Ha, Kyung-Ho;Kang, Gyu-Hong;Hong, Jung-Pyo;Jeong, Seung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.837-839
    • /
    • 2000
  • Capacitor-run single induction motors have the unbalanced elliptic rotating magnetic field so that it is difficult to analyze the characteristic and calculate the accurate slot leakage reactance of the rotor with the closed slot by using the lumped parameter. In this paper, the characteristic is analyzed by the symmetrical coordinate method in terms of the lumped parameter coupled with the numerical analysis. The secondary parameters are calculated by the one slot pitch boundary condition applying to Finite Element Method (FEM). The analysis results are compared with experimental ones.

  • PDF