• Title/Summary/Keyword: luciferase assay

Search Result 298, Processing Time 0.022 seconds

Development of a Novel ATP Bioluminescence Assay Based on Engineered Probiotic Saccharomyces boulardii Expressing Firefly Luciferase

  • Ji Sun Park;Young-Woo Kim;Hyungdong Kim;Sun-Ki Kim;Kyeongsoon Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1506-1512
    • /
    • 2023
  • Quantitative analysis of adenosine triphosphate (ATP) has been widely used as a diagnostic tool in the food and medical industries. Particularly, the pathogenesis of a few diseases including inflammatory bowel disease (IBD) is closely related to high ATP concentrations. A bioluminescent D-luciferin/luciferase system, which includes a luciferase (FLuc) from the firefly Photinus pyralis as a key component, is the most commonly used method for the detection and quantification of ATP. Here, instead of isolating FLuc produced in recombinant Escherichia coli, we aimed to develop a whole-cell biocatalyst system that does not require extraction and purification of FLuc. To this end, the gene coding for FLuc was introduced into the genome of probiotic Saccharomyces boulardii using the CRISPR/Cas9-based genome editing system. The linear relationship (r2 = 0.9561) between ATP levels and bioluminescence generated from the engineered S. boulardii expressing FLuc was observed in vitro. To explore the feasibility of using the engineered S. boulardii expressing FLuc as a whole-cell biosensor to detect inflammation biomarker (i.e., ATP) in the gut, a colitis mouse model was established using dextran sodium sulfate as a colitogenic compound. Our findings demonstrated that the whole-cell biosensor can detect elevated ATP levels during gut inflammation in mice. Therefore, the simple and powerful method developed herein could be applied for non-invasive IBD diagnosis.

Mangiferin inhibits tumor necrosis factor-α-induced matrix metalloproteinase-9 expression and cellular invasion by suppressing nuclear factor-κB activity

  • Dilshara, Matharage Gayani;Kang, Chang-Hee;Choi, Yung Hyun;Kim, Gi-Young
    • BMB Reports
    • /
    • v.48 no.10
    • /
    • pp.559-564
    • /
    • 2015
  • We investigated the effects of mangiferin on the expression and activity of metalloproteinase (MMP)-9 and the invasion of tumor necrosis factor (TNF)-$\alpha$-stimulated human LNCaP prostate carcinoma cells. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that mangiferin significantly reversed TNF-$\alpha$-induced mRNA and protein expression of MMP-9 expression. Zymography data confirmed that stimulation of cells with TNF-$\alpha$ significantly increased MMP-9 activity. However, mangiferin substantially reduced the TNF-$\alpha$-induced activity of MMP-9. Additionally, a matrigel invasion assay showed that mangiferin significantly reduced TNF-$\alpha$-induced invasion of LNCaP cells. Compared to untreated controls, TNF-$\alpha$-stimulated LNCaP cells showed a significant increase in nuclear factor-${\kappa}B$ (NF-${\kappa}B$) luciferase activity. However, mangiferin treatment markedly decreased TNF-$\alpha$-induced NF-${\kappa}B$ luciferase activity. Furthermore, mangiferin suppressed nuclear translocation of the NF-${\kappa}B$ subunits p65 and p50. Collectively, our results indicate that mangiferin is a potential anti-invasive agent that acts by suppressing NF-${\kappa}B$-mediated MMP-9 expression.

Inhibition of Cell Proliferation and Migration by miR-509-3p That Targets CDK2, Rac1, and PIK3C2A

  • Yoon, Sena;Han, Eunji;Choi, Young-Chul;Kee, Honghwan;Jeong, Yongsu;Yoon, Jaeseung;Baek, Kwanghee
    • Molecules and Cells
    • /
    • v.37 no.4
    • /
    • pp.314-321
    • /
    • 2014
  • CDK2 is a key regulator of cell cycle progression. In this study, we screened for miRNAs targeting CDK2 using a luciferase-3'-untranslated region reporter assay. Among 11 hit miRNAs, miR-509-3p reduced CDK2 protein levels and significantly inhibited cancer cell growth. Microarray, Western blotting, and luciferase reporter analyses revealed additional targets of miR-509-3p, including Rac1 and PIK3C2A. Overexpression of miR-509-3p induced G1 cell-cycle arrest and inhibited colony formation and migration. RNAi experiments indicated that the growth-inhibitory effects of miR-509-3p may occur through down-regulation of CDK2, Rac1, and PIK3C2A. Targeting of multiple growth regulatory genes by miR-509-3p may contribute to effective anti-cancer therapy.

Transcriptional Regulation and Apoptosis Induction by Tcf/$\beta$-Catenin Complex in Various T-Cells

  • Jeong, Sunjoo;Lee, Seung-Yeon;Lee, Sun-Hee
    • Animal cells and systems
    • /
    • v.4 no.4
    • /
    • pp.389-394
    • /
    • 2000
  • The Tcf-1 (1-cell factor-1) protein binds to the T-cell specific enhancer sequences and plays an architectural role in the assembly of transcriptional machinery. One of the Tcf family proteins, Tcf-4, was found to be an important regulator for colon cancer development where it activates specific genes upon binding to $\beta$-catenin following Wnt signaling. We were interested in the transcriptional regulatory activities of Tcf-1 and Tcf-4 proteins in T-cells and colon cancer cells. Transactivation assay was developed using a reporter plasmid containing luciferase gene under the control of Tcf responsive elements. Luciferase activity was determined following co-transfection of the reporter along with Tcf-1 and/or $\beta$-catenin expressing plasmids. Transcription was significantly induced by $\beta$-catenin expression in all cells. Tcf-1 by itself did not induce transcription in the mature T-cell lines, but overexpressed Tcf-1 greatly activated transcription in the immature T-cell line. In addition, transfected $\beta$-catenin induced apoptosis, but co-transfected Tcf-1 suppressed apoptosis in HEK293 cells. These results suggest that Tcf-1 and $\beta$-catenin differently regulate transcription and apoptosis.

  • PDF

Establishment of CALUX Bioassay for Dioxin Determination

  • Joung, Ki-Eun;Chung, Young-Hee;Sheen, Yhun-Yhong
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.3
    • /
    • pp.137-142
    • /
    • 2004
  • Dioxin-like compounds are ubiquitous environmental polltants that could be accumulated in biological system and toxic to human and wildlife. Given this issue, it is important to develop a reliable dioxin detection methods for a rational risk assesment of dioxin-like compounds. In this study, we tried to set up and validate a sensitive, reliable risk assessment of dioxin-like compounds. In this study, we tried to set up and validate a sensitive, reliable and rapid bioassay model, CALUX bioassay as a screening tool for routine measurement of dioxin-like conpounds in environmental matrices. For the valisation of CALUX bioassay, firstly, we performed dose-response assay for 2,3,7,8-TCDD, most potent dioxin-like compound, using two different methods CALUX and EROD assay. Induction of luciferase activity and CYPIA catalyzed EROD activity were dose-dependently induced by 2,3,7,8-TCDD, with initial induction at 0.1 pM and maximal induction at 1 nM. In order t determine whether the CALUX bioassay could predict the effects of dioxin-like compounds, 2,3,7,8-TCDD dose-response from CALUX was compared with that from EROD assay. The correlation coefficient ($r^2$) was found to be 0.89, indicating a good correlation between two different methods and the possibility of CALUX bioassay as a useful dioxin detecting method.

  • PDF

Identification of the DNA Binding Element of the Human ZNF333 Protein

  • Jing, Zhe;Liu, Yaping;Dong, Min;Hu, Shaoyi;Huang, Shangzhi
    • BMB Reports
    • /
    • v.37 no.6
    • /
    • pp.663-670
    • /
    • 2004
  • ZNF 333 is a new and sole gene containing two KRAB domains which has been identified currently. It is a member of subfamilies of zinc finger gene complex which had been localized on chromosome 19p13.1. The ZNF333 gene mainly encodes a 75.5 kDa protein which contains 10 zinc finger domains. Using the methods of random oligonucleotide selection assay, electromobility gel shift assay and luciferase activity assay, we found that ZNF333 recognized the specific DNA core binding sequence ATAAT. Moreover, these data indicated that the KRAB domain of ZNF333 really has the ability of transcriptional repression.

Inhibitory Effect of Water Extracts of Aconiti Lateralis Preparata Radix and Acanthopanacis Cortex on Differentiation of Bone Marrow-Derived Adipocytes and Osteoclasts (부자(附子)와 오가피(五加皮) 물 추출물의 골수유래 지방세포와 파골세포 분화 억제 효과)

  • Lee, Kyung-Seon;Choi, Eun-Sik;Han, Sang-Yong;Kim, Yun-Kyung
    • Herbal Formula Science
    • /
    • v.22 no.1
    • /
    • pp.151-165
    • /
    • 2014
  • Objectives : The aim of this study was to evaluate the efficacy of Aconiti Lateralis Preparata Radix (AP) and Acanthopanacis Cortex (AT) extracts in bone-derived adipocyte OP9 cell, osteoclast and osteoblast-like MG63 cells. Methods : MTT assay was used to evaluate the cytotoxicity of AP and AT extracts on OP9, osteoclast and MG63 cells. OP9 cells were treated with AP and AT, and the alterations in fat storage in the cells were determined by the Oil red O. To explain effects of RANKL-induced osteoclast differentiation in bone marrow macrophages, we performed the TRAP staining. The protein level of CAAAT/enhancer binding protein alpha ($C/EBP{\alpha}$) and peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) as a adipocyte differentiation marker, and adiponectin was examined using western blot in differentiated OP9 cells. Effects of related genes were confirmed by luciferase assay using reporter assay. Results : AP and AT was not toxic on OP9 and MG63 cells, but AT was a little cytotoxic to osteoclast at the dose of $100{\mu}g/m{\ell}$. They could inhibit differentiation of OP9 cells and osteoclast with results of oil red O staining and TRAP staining. By western blot, AP and AT decreased the expression of $PPAR{\gamma}$ and $C/EBP{\alpha}$ which is the key transcription factor in adipogenesis and adiponectin secretion. AT also inhibited the BMP-4 activity in luciferase assay. AP also inhibited BMP-4 and Wnt3a activity, stimulated ER-${\beta}$ activity but inhibited androgen receptor activity. Conclusions : These results show AP and AT can be useful in osteoporosis and obesity via inhibition of osteoclast and adipocyte differentiation.

miR-458b-5p regulates ovarian granulosa cells proliferation through Wnt/β-catenin signaling pathway by targeting catenin beta-1

  • Wang, Wenwen;Teng, Jun;Han, Xu;Zhang, Shen;Zhang, Qin;Tang, Hui
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.957-966
    • /
    • 2021
  • Objective: Ovarian follicular development, which dependent on the proliferation and differentiation of granulosa cells (GCs), is a complex biological process in which miRNA plays an important role. Our previous study showed that miR-458b-5p is associated with ovarian follicular development in chicken. The detailed function and molecular mechanism of miR-458b-5p in GCs is unclear. Methods: The luciferase reporter assay was used to verify the targeting relationship between miR-458b-5p and catenin beta-1 (CTNNB1), which is an important transcriptional regulatory factor of the Wnt/β-catenin pathway. The cell counting kit-8 (CCK-8) assay, flow cytometry with propidium iodide (PI) and annexin V-fluorescein isothiocyanate (FITC) labeling were applied to explore the effect of miR-458b-5p on proliferation, cell cycle and apoptosis of chicken GCs. Quantitative real-time polymerase chain reaction and Western blot were used to detect the mRNA and protein expression levels. Results: We demonstrated that the expression of miR-458b-5p and CTNNB1 showed the opposite relationship in GCs and theca cells of hierarchical follicles. The luciferase reporter assay confirmed that CTNNB1 is the direct target of miR-458b-5p. Using CCK-8 assay and flow cytometry with PI and Annexin V-FITC labeling, we observed that transfection with the miR-458b-5p mimics significantly reduced proliferation and has no effects on apoptosis of chicken GCs. In addition, miR-458b-5p decreased the mRNA and protein expression of CD44 molecule and matrix metallopeptidase 7, which are the downstream effectors of CTNNB1 in Wnt/β-Catenin pathway and play functional roles in cell proliferation. Conclusion: Taken together, the data indicate that miR-458b-5p regulates ovarian GCs proliferation through Wnt/β-catenin signaling pathway by targeting CTNNB1, suggesting that miR-458b-5p and its target gene CTNNB1 may potentially play a role in chicken ovarian follicular development.

Inhibitory Mechanism on NF-${\kappa}B$ Transactivation by Dexamethasone in Pulmonary Epithelial Cells (폐상피세포에서 Dexamethasone에 의한 NF-${\kappa}B$ Transactivation 억제기전에 관한 연구)

  • Lee, Kye-Young;Kim, Yoon-Seop;Ko, Mi-Hye;Park, Jae-Seok;Jee, Young-Koo;Kim, Keun-Youl;Kwak, Sahng-June
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.5
    • /
    • pp.682-698
    • /
    • 2000
  • Glucocorticoid receptor (GR) functions as a suppressor of inflammation by inhibiting the expression of many cytokine genes activated by NF-${\kappa}B$. The goal of this study is to investigate the mechanism by which GR repress NF-${\kappa}B$ activation in lung epithelial cells. We used A549 and BEAS-2B lung epithelia! cell lines. Using Ig$G{\kappa}$-NF-${\kappa}B$ luciferase reporter gene construct, we found that dexamethasone significantly suppressed TNF-$\alpha$-induced NF-${\kappa}B$ activation and the overexpression of GR showed dose-dependent reduction of TNF-$\alpha$-induced NF-${\kappa}B$ activity in both cell lines. However, DNA binding of NF-${\kappa}B$ induced by TNF-$\alpha$ in electromobility shift assay was not inhibited by dexamethasone. Super shift assay with anti-p65 antibody demonstrated the existence of p65 in NF-${\kappa}B$ complex induced by $\alpha$ Western blot showed that $I{\kappa}B{\alpha}$ degradation induced by TNF-$\alpha$ was not affected by dexamethasone and $I{\kappa}B{\kappa}$ was not induced by dexamethasone, neither. To evaluate p65 specific transactivation, we adopted co-transfection study of Gal4-p65TA1 or TA2 fusion protein expression system together with 5xGal4-luciferase vector. Co-transfection of GR with Gal4-p65TA1 or TA2 repressed luciferase activity profoundly to the level of 10-20% of p65TA1- or TA2-induced transcriptional activity. And this transrepressional effect was abolished by co-transfection of CBP of SRC-1 expression vectors. These results suggest that GR-mediated transrepression of NF-${\kappa}B$ in lung epithelial cells is through competing for binding to limiting amounts of transcriptional coactivators, CBP or SRC-1.

  • PDF