Browse > Article
http://dx.doi.org/10.14348/molcells.2014.2360

Inhibition of Cell Proliferation and Migration by miR-509-3p That Targets CDK2, Rac1, and PIK3C2A  

Yoon, Sena (Graduate School of Biotechnology, Kyung Hee University)
Han, Eunji (Graduate School of Biotechnology, Kyung Hee University)
Choi, Young-Chul (Graduate School of Biotechnology, Kyung Hee University)
Kee, Honghwan (Graduate School of Biotechnology, Kyung Hee University)
Jeong, Yongsu (Graduate School of Biotechnology, Kyung Hee University)
Yoon, Jaeseung (Graduate School of Biotechnology, Kyung Hee University)
Baek, Kwanghee (Graduate School of Biotechnology, Kyung Hee University)
Abstract
CDK2 is a key regulator of cell cycle progression. In this study, we screened for miRNAs targeting CDK2 using a luciferase-3'-untranslated region reporter assay. Among 11 hit miRNAs, miR-509-3p reduced CDK2 protein levels and significantly inhibited cancer cell growth. Microarray, Western blotting, and luciferase reporter analyses revealed additional targets of miR-509-3p, including Rac1 and PIK3C2A. Overexpression of miR-509-3p induced G1 cell-cycle arrest and inhibited colony formation and migration. RNAi experiments indicated that the growth-inhibitory effects of miR-509-3p may occur through down-regulation of CDK2, Rac1, and PIK3C2A. Targeting of multiple growth regulatory genes by miR-509-3p may contribute to effective anti-cancer therapy.
Keywords
CDK2; growth inhibition; microRNA; miR-509-3p; PIK3C2A; Rac1;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297.   DOI   ScienceOn
2 Akunuru, S., Palumbo, J., Zhai, Q.J., and Zheng, Y. (2011). Rac1 targeting suppresses human non-small cell lung adenocarcinoma cancer stem cell activity. PLoS One 6, e16951.   DOI   ScienceOn
3 Aqeilan, R.I., Calin, G.A., and Croce, C.M. (2010). miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ. 17, 215-220.   DOI   ScienceOn
4 Bader, A.G. (2012). miR-34 - a microRNA replacement therapy is headed to the clinic. Front. Genet. 3, 120.
5 Faber, A.C., and Chiles, T.C. (2007). Inhibition of cyclin-dependent kinase-2 induces apoptosis in human diffuse large B-cell lymphomas. Cell Cycle 6, 2982-2989.   DOI
6 Bussing, I., Slack, F.J., and Grosshans, H. (2008). let-7 microRNAs in development, stem cells and cancer. Trends Mol. Med. 14, 400-409.   DOI   ScienceOn
7 Choung, S., Kim, Y.J., Kim, S., Park, H.O., and Choi, Y.C. (2006). Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem. Biophys. Res. Commun. 342, 919-927.   DOI   ScienceOn
8 He, L., and Hannon, G.J. (2004). MicroRNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522-531.   DOI   ScienceOn
9 Hermeking, H. (2010). The miR-34 family in cancer and apoptosis. Cell Death Differ. 17, 193-199.   DOI   ScienceOn
10 Hoshino, I., and Matsubara, H. (2013). MicroRNAs in cancer diagnosis and therapy: from bench to bedside. Surg. Today 43, 467-478.   DOI   ScienceOn
11 Hu, B., Mitra, J., van den Heuvel, S., and Enders, G.H. (2001). S and G2 phase roles for Cdk2 revealed by inducible expression of a dominant-negative mutant in human cells. Mol. Cell. Biol. 21, 2755-2766.   DOI   ScienceOn
12 Kang, S., Song, J., Kang, J., Kang, H., Lee, D., Lee, Y., and Park, D. (2005). Suppression of the alpha-isoform of class II phosphoinositide 3-kinase gene expression leads to apoptotic cell death. Biochem. Biophys. Res. Commun. 329, 6-10.   DOI   ScienceOn
13 Kim, S., Lee, U.J., Kim, M.N., Lee, E.J., Kim, J.Y., Lee, M.Y., Choung, S., Kim, Y.J., and Choi, Y.C. (2008). MicroRNA miR-$199a^*$ regulates the MET proto-oncogene and the downstream extracellular signal-regulated kinase 2 (ERK2). J. Biol. Chem. 283, 18158-18166.   DOI   ScienceOn
14 Long, X.E., Gong, Z.H., Pan, L., Zhong, Z.W., Le, Y.P., Liu, Q., Guo, J.M., and Zhong, J.C. (2010). Suppression of CDK2 expression by siRNA induces cell cycle arrest and cell proliferation inhibition in human cancer cells. BMB Rep. 43, 291-296.   과학기술학회마을   DOI   ScienceOn
15 Ng, S.K., Neo, S.Y., Yap, Y.W., Karuturi, R.K., Loh, E.S., Liau, K.H., and Ren, E.C. (2009). Ablation of phosphoinositide-3-kinase class II alpha suppresses hepatoma cell proliferation. Biochem. Biophys. Res. Commun. 387, 310-315.   DOI   ScienceOn
16 Tetsu, O., and McCormick, F. (2003). Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell 3, 233-245.   DOI   ScienceOn
17 Zhai, Q., Zhou, L., Zhao, C., Wan, J., Yu, Z., Guo, X., Qin, J., Chen, J., and Lu, R. (2012). Identification of miR-508-3p and miR-509-3p that are associated with cell invasion and migration and involved in the apoptosis of renal cell carcinoma. Biochem. Biophys. Res. Commun. 419, 621-626.   DOI   ScienceOn
18 Tsai, L.H., Lees, E., Faha, B., Harlow, E., and Riabowol, K. (1993). The cdk2 kinase is required for the G1-to-S transition in mammalian cells. Oncogene 8, 1593-1602.
19 Wang, X., Gorospe, M., Huang, Y., and Holbrook, N.J. (1997). p27Kip1 overexpression causes apoptotic death of mammalian cells. Oncogene 15, 2991-2997.   DOI
20 Wu, L., Cai, C., Wang, X., Liu, M., Li, X., and Tang, H. (2011). MicroRNA-142-3p, a new regulator of RAC1, suppresses the migration and invasion of hepatocellular carcinoma cells. FEBS Lett. 585, 1322-1330.   DOI   ScienceOn
21 Ortega, S., Prieto, I., Odajima, J., Martin, A., Dubus, P., Sotillo, R., Barbero, J.L., Malumbres, M., and Barbacid, M. (2003). Cyclindependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat. Genet. 35, 25-31.   DOI   ScienceOn
22 Elis, W., Triantafellow, E., Wolters, N.M., Sian, K.R., Caponigro, G., Borawski, J., Gaither, L.A., Murphy, L.O., Finan, P.M., and Mackeigan, J.P. (2008). Down-regulation of class II phosphoinositide 3-kinase alpha expression below a critical threshold induces apoptotic cell death. Mol. Cancer Res. 6, 614-623.   DOI   ScienceOn