• Title/Summary/Keyword: lower order

Search Result 9,414, Processing Time 0.046 seconds

MOMENTS OF LOWER GENERALIZED ORDER STATISTICS FROM DOUBLY TRUNCATED CONTINUOUS DISTRIBUTIONS AND CHARACTERIZATIONS

  • Kumar, Devendra
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.441-451
    • /
    • 2013
  • In this paper, we derive recurrence relations for moments of lower generalized order statistics within a class of doubly truncated distributions. Inverse Weibull, exponentiated Weibull, power function, exponentiated Pareto, exponentiated gamma, generalized exponential, exponentiated log-logistic, generalized inverse Weibull, extended type I generalized logistic, logistic and Gumble distributions are given as illustrative examples. Further, recurrence relations for moments of order statistics and lower record values are obtained as special cases of the lower generalized order statistics, also two theorems for characterizing the general form of distribution based on single moments of lower generalized order statistics are given.

EFFECT OF INTEGER TRANSLATION ON RELATIVE ORDER AND RELATIVE TYPE OF ENTIRE AND MEROMORPHIC FUNCTIONS

  • Biswas, Tanmay;Datta, Sanjib Kumar
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.485-494
    • /
    • 2018
  • In this paper some newly developed results based on the growth properties of relative order (relative lower order), relative type (relative lower type) and relative weak type of entire and meromorphic functions on the basis of integer translation applied upon them are investigated.

ITERATED ENTIRE FUNCTIONS AND THEIR GROWTH PROPERTIES ON THE BASIS OF (p, q)-TH ORDER

  • Biswas, Tanmay;Choi, Junesang;Das, Pranab;Datta, Sanjib Kumar
    • Honam Mathematical Journal
    • /
    • v.38 no.1
    • /
    • pp.169-212
    • /
    • 2016
  • Entire functions have been investigated so popularly to have been divided into a large number of specialized subjects. Even the limited subject of entire functions is too vast to be dealt with in a single volume with any approach to completeness. Here, in this paper, we choose to investigate certain interesting results associated with the comparative growth properties of iterated entire functions using (p, q)-th order and (p, q)-th lower order, in a rather comprehensive and systematic manner.

A Coupled Analysis of Smart Plate Under Electro-Mechanical Loading Using Enhanced Lower-Order Shear Deformation Theory (개선된 저차 전단 변형 이론을 이용한 전기, 기계 하중을 받는 스마트 복합재 구조물의 연성 해석)

  • Oh, Jin-Ho;Cho, Maeng-Hyo;Kim, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.121-128
    • /
    • 2007
  • Enhanced lower order shear deformation theory is developed in this study. Generally, lower order theories are not adequate to predict accurate deformation and stress distribution through the thickness of laminated plate. For the accurate prediction of detailed stress and deformation distributions through the thickness, higher order zigzag theories have been proposed. However, in most cases, simplified zigzag higher order theory requires $C_1$, shape functions in finite element implementation. In commercial FE softwares, $C_1$, shape functions are not so common in plate and shell analysis. Thus zigzag theories are useful for the highly accurate prediction of thick composite behaviors but they are not practical in the sense that they cannot be used conveniently in the commercial package. In practice, iso-parametric $C_0$ plate model is the standard model for the analysis and design of composite laminated plates and shells. Thus in the present study, an enhanced lower order shear deformation theory is developed. The proposed theory requires only $C_0$ shape function in FE implementation. The least-squared energy error between the lower order theory and higher order theory is minimized. An enhanced lower order shear deformation theory(ELSDT) in this paper is proposed for smart structure under complex loadings. The ELSDT is constructed by the strain energy transformation and fully coupled mechanical, electric loading cases are studied. In order to obtain accurate prediction, zigzag in-plane displacement and transverse normal deformation are considered in the deformation Held. In the electric behavior, open-circuit condition as well as closed-circuit condition is considered. Through the numerous examples, the accuracy and robustness of present theory are demonstrated.

RELATIONS OF DAGUM DISTRIBUTION BASED ON DUAL GENERALIZED ORDER STATISTICS

  • KUMAR, DEVENDRA
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.5_6
    • /
    • pp.477-493
    • /
    • 2017
  • The dual generalized order statistics is a unified model which contains the well known decreasingly ordered random variables like order statistics and lower record values. With this definition we give simple expressions for single and product moments of dual generalized order statistics from Dagum distribution. The results for order statistics and lower records are deduced from the relations derived and some computational works are also carried out. Further, a characterizing result of this distribution on using the conditional moment of the dual generalized order statistics is discussed. These recurrence relations enable computation of the means, variances and covariances of all order statistics for all sample sizes in a simple and efficient manner. By using these relations, we tabulate the means, variances, skewness and kurtosis of order statistics and record values of the Dagum distribution.

A Suggestion on the System of Mountain Classification and Nomenclature using the Mountain Orders (산지차수를 이용한 산지의 분류 및 명명 체계의 제안)

  • Son, Ill
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.2
    • /
    • pp.115-133
    • /
    • 2011
  • Yamada's mountain ordering is to be said as an upward system, because the area and volume of the mountains become the larger as more than two lower order mountains constitute the higher order mountain. However, his mountain ordering shows some limitations to totally understand the mountain systems and to systematically manage the various kinds of mountainous informations. Because the independent third, fourth and so on, as well as the second lower order mountains are included in the higher order mountain. In order to solve the problem above, the downward system is suggested as the alternative of his upward system. The downward system means that the higher order mountain is classified into the second lower order mountains, and the second lower order mountain is classified into the third lower order mountains and finally the 2nd order mountain classified into the 1st order mountains. The method to classify a certain mountain systematically into all mountainous elements and the new nomenclature to be used for the classified elements are developed, using the downward system above. And the structure of database could be also suggested for the integrated and systematic management of mountain informations.