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UPPER AND LOWER SOLUTIONS METHOD
FOR SECOND ORDER NONLINEAR FOUR
POINT BOUNDARY VALUE PROBLEMS

RAHMAT ALI KHAN, JUaN J. NIETO,
AND ROSANA RODRIGUEZ-LOPEZ

ABSTRACT. We develop the upper and lower solutions method for
the four point problem relative to second order differential equations
in order to obtain the existence of solution.

1. Introduction

We consider the following second order nonlinear differential equation
with four poirt boundary conditions

0 [ 2'(t) = f(t,o(t), (), tel=lab]
| 2(a) = 2(c), 2(b) = 2(d),

where a < ¢ < d < band f : I x R? = R is continuous.

The method of upper and lower solutions is used to prove the ex-
istence of solution to (1). To obtain a sequence which converges to a
solution for this equation, approximated problems are considered. We
extend some results of [5].

Note that (1) is a problem at resonance since any constant function
is a solution for the linear equation z” = 0 with the four-point boundary
condition.
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In this paper, the type of upper and lower solutions of (1) admissible is
more general, whereas in [5], upper and lower solutions were considered
constant functions.

In Section 2, the terms of upper and lower solutions of (1) are defined
and an existence result for problem (1) is given, considering the conti-
nuity of f and the existence of well-ordered upper and lower solutions.

In [1], it is considered different four-point boundary condition so that
the linear part is invertible (see Lemma 2.2 for the expression of the
corresponding Green’s function).

Also, in (2], it is studied a four-point boundary value problem for
second-order nonlinear ordinary differential equations with the nonlin-
earity independent of the derivative. Positive solutions of nonlinear four-
point boundary value problems have been studied recently [3, 4].

2. Main results

We consider the spaces of functions C(I) and C'(I) furnished, re-
spectively, with the norms

2]l = sup{la(t)] : ¢ € I}, llzlly = ||zl + [|=[l

DEFINITION 1. A function o € C?[a, b] is said to be a lower solution
to problem (1) if

a'(t) > ft, a(t),d (t), t € [a,b],

afa) < ae), a(d) > a(b).
Similarly, 8 € C?[a,b] is an upper solution to problem (1) if
B(t) < f(t,B8(),6'(t)), t € [a,b],

B(a) > B(c), B(d) < B(b).

This formulation includes the constant case, considered in [5], since
functions

a(t) =11, B(t) =72, t € [a,b],

where 71, ro € R, verify the boundary conditions in the previous def-
inition. So that the existence result we present is a generalization of
Lemma 2 in [5].



Upper and lower solutions method for second order nonlinear 1255

THEOREM 2.1. Suppose that o, 8 € C?|a,b] are, respectively, lower
and upper solutions to problem (1), with o < 3 on I = [a,b] and that
there exists K € R, K > 0 such that

b
/ [f(t,z,y)|dt < K, Yz € [aft), B(t)], y € R.

Then problem: (1) has at least one solution v verifying that
alt) <wu(t) < B(t), t € [a,b].
Proof. Consider m € N, m > 1 fixed and define
fm(t 2, y)

(£, 8),8'0) + Ty 1 B) +

7, 600),1) + [£(6,6),8) - £(¢.60),9) + 25525

xm(zx - B(t)), if B(t) < z < B(t) +
) fGay), ifall) <z <B(0),

<z

1
m

1
m?

£t,a(t),y) = [£(t,a(t), o) = £t a(t),y) + m]
xm(z — a(t)), if aft) — o <z < aft),
| fta(t), o' (1) + s, iz <a(t) - .

Note that f, is continuous on I x R2. We consider the problem

(2) [ 2"(t) = fm(t,(t),2'(t)), t€I=[ab],
1 x(a) = z(c), z(b) = z(d).

If  is a solution to (2) such that & < z < 3, then z is a solution to (1).

Take r = max; 8 — minj . If miny o = max; 3, then ¢« = G is a
constant solution to (1). We can assume, therefore, that » > 0, and
define o = I, then o > 0. Choose R > 0 such that

|f(t, alt), ' )], [F(B(), B () < R, tel.
Take M7 > 0 large enough such that
0 < R < Mo.
Therefore,

—Mio < —R < f(t,at),o/(t), f(tB(t),6() <R< Mo, tel
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Define bounded and continuous functions

Tt for z > a(t) + 7=,
Ki(t,2) =3 m(z—a(t), fora(t) <o <alt)+ =,
0, for z < a(t),

0, for z > B(¢ )
Ka(t,z) = { m(z — B(1)), for B(t) — 7y < = < B(H),

——M%, for x < B(¢ ) R

mMyo’
Taking
o(t,x) = [K1(t,z) + Ka(t, z)| Mo, (t,z) € I xR,
then ¢ is continuous and bounded on I x R and satisfies —R < ¢ < R

on I x R.
Denote

p(t,z) = max{a(t), min{z, 5(t)}}.
(

To prove existence of solution to (2), consider problem

2" (t) = fn(t, z(t),2'(t),A), t€1I=]a,b],
) { 2(a) = 2(c), o(b) = =(d),
where
fm(tv"zaya ’\) = Afm(tax>y) + (1 - >‘) {d)(t,.’l?) - p(t,a:) + :E},
and A € [0,1].

Note that if z is a solution to (3) for A = 1 and z(¢) € [a(t), B(t)],
Vvt € I, then

2’(t) = fm(t, 2(t), &'(t) = f(t,2(t), (1))

and z is a solution to (1).
If A =0, problem (3) is reduced to

(4) 2”(t) = ¢(t, z(t)) — p(t, x(t)) + z(t), tel,
z(a) = z(c), z(b) = z(d),
and, for A =1, it is (2). Since ¢(t,z) —p(t, ) is continuous and bounded
and the linear problem
{ z"(t) = z(t), tel,
z(a) = z(c), x(b) = z(d),

has only the trivial solution, then problem (4) has a solution, i.e., prob-
lem (3) has a solution for A = 0.
For A € [0,1], any solution u to problem (3) satisfies that

off) ~ - < u(t) <)+ el
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Indeed, let A € [0,1] and w a solution to (3). Consider the function
v(t) = u(t) — B(t) — & and suppose that maxycs v(t) = v(to) > 0. Using
the boundary conditions, we obtain that

v(a) = u(a) — B(a) — % <u(c) - B(c) — 1 = v(c), v(d) > v(b),

m
so that we can assume that ¢y € (a,b). Then

v(to) > 0, v'(tg) =0, v"(tp) <0,

that is,
1
u(to) > B(to) + po u'(to) = B (to).

Then )

1

—- > - >

u(to) > B(to) + —2 afte) + —2 a(ty) + Mo

so that

Kislto,ult0) = 7= Kalto,ulto)) =0,
and, using the definition of ¢ and the hypotheses on 3,
v"(to) = u"(to) — 8" (to)
= Afm(to,u(to), % (to))
+(1 = X) {o(to, u(to)) — plto, u(to)) +u(to)} — 8" (to)
> Afm(to, u(to), o' (to))
+(1 = A) {¢(t0, u(to)) — p(to, u(to)) + ulto)}
— f(to, B(to), B'(to))
u(to) — Bto) ]

~ [f(to,mto),ﬁ’(to)) T T Julto) — At0)

+(1 = X) [R — B(to) + u(to)] — f(to, B(to), B'(to))
= (1—X) [R = f(to, B(to), B'(t0))] + (u(to) — B(to))
A
[ 0 ”]
> (1-X)[R— f(to, B(t0), B (ta))] > 0,
which is a contradiction. This proves that v < 0 on I, so that u(t) <
Bt)+ L, ter
Also, we can prove that u(t) > a(t) — &, for all t € I. Defining
v(t) = u(t) — ct) + %, if mingerv(t) = v(t1) < 0, then
v(a) > v(c), v(d) < v(b),
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so that we can assume that ¢; € (a,b). Then
v(t1) <0, v'(t1) =0, v"(¢1) > 0,
which imply
w(ts) < afty) % U () = o (1),

Hence
R
mMio’

u(ta) < aft) — < (1) ~ = < (o) -

and, therefore,
__R

M 10 '
Using the definition of ¢ and the hypotheses satisfied by «,

’U”(tl) _ u"(tl) _ Oé”(tl)

)‘fm(thu(tl)?u/(tl))

+(1 =) {o(t1, ultr)) — p(t1, ultr)) + u(ts)}

—f(t1,et), o/ (1)) |
u(t) — a(t) ]

_ ) [f(tl,am),a'(tl)) T () — alt)

+(1 = XN [-R — aft1) + u(t1)] — f(t1,at1), o/ (t1))
= —(1=X)[R+ f(t1,e(t1), o/ (t1))] + (u(t1) — a(t1))
A
* [1+ () —at)] T “A)]
< —(1 — )\) [R—+— f(tl,a(tl),a'(tl))] <0,

Kl(tl,u(tl)) =0, KQ(tlﬁu(tl)) =

IN

obtaining a contradiction again. This proves that u(t) > a(t) — —, for
m

allt e I

The boundary conditions on u imply that there exists t € (a,b) with
u/(t) = 0, so that, integrating the equation in (3), we obtain, for t > ¢,
that

W) = (t) — () = /t Cu(s) ds
=/£ [Afm(s,u(s),u'(s)) + (1 — ) {d(s, u(s)) — p(s, u(s)) + u(s)}] ds,
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so that
|u' (1) S/t~ |AFm(s,u(s),u'(s)) + (L = M) {o(s,u(s)) — p(s,u(s)) +u(s)}| ds

b
S/ IAfm(s,u(s),u'(s)) + (1 = A) {¢(s, u(s)) — p(s, u(s)) + u(s)}| ds.

A similar estimate can be obtained for ¢ < £, so that, for all t € I, we
get

(¢ |</ (s, s s)|ds+/ 16(s, u(s)) — p(s, u(s)) + u(s)| ds.

Since a(t) — ;ﬁ <ut) < B(t) + %, for t € I, and —R < ¢(s,u(s)) <
R, s €1, then

R = B(s) + a(s) — — < ¢(s, u(s)) — pls,u(s) +u(s)
<R—a(s)+8(s)+ =, sel,
and | "
[B(s,u(s), —pls, u(s)) +u(s)| < R+ B(s) ~ als) + —, s €,

which implies that

b
1
|/ (¢ |</ | fra(s, u(s) |ds+/ [R+6(s)—a(s)+a] ds,t € 1.
1 1 .
The expression a(t) — — < u(t) < B(t) + - for ¢ € I, also provides
that fm(s,u(s),v/(s)) can be equal to

f(s,8(s), u'(s))

# [£5,B60 8 6) = Flo 86 ) + s

x m(ufs) - 6(s)), i B(s) < u(s) < B(s) +
(s,u(s), 4 (5), it a(s) < u(s) < B0,
(s, as),3(5))

- [ a0 )~ ss, 0o + D=2

x m(u(s) — a(s)), if a(s) — % < u(s) < afs).
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For ((s) < u(s) < B(s) + —
|fm (s, u(s),u/(s))]
< |f(s,8(s),u/(s))]
£(s,8(5), B'(s)) — f(s,B(s), ' (s)) +

x m (u(s) — B(s))
< |f (s, B(s), ' (s))l
u(s) — B(s

+f@ﬂﬁﬂ@%¢@MQw@H1+mU &m
)

< |£(s,B(s),u/(s) + £ (s, 8(s), B'(s))| + |£ (s, B(s), ' (s))]

u(s) — B(s)
+1+u() A(5)

< |£(s,8(s),u/(s))| + [ £ (s, B(s), B ()] + | (5, 8(s), w'(s))] + %

u(s) — B(s)

- T+ [u(s) — B(s)]

1
m—

and, for a(s) — % < u(s) < a(s),

| fm(s, u(s), w'(s))]

< [£(s,a(s), 2/ (s))]
+|£(s,a(s),0/(s)) = f(s,a(s),v/(s)) +
x m[u(s) — o(s)]

< 1£(s, afs), u'(s))]

)
+ |£(s,(s), /() = (s, QM“W+1f$532n

s

< |f(s,a(s),w/' ()] + |f (s, c(s), &/ (s))] + £ (s, a(s), u'(s))]
u(s) — a(s)

1+ Ju(s) — afs)|

< 1f(s,0(8), 0 ()] + | f (s, x(s), 0/ (s))] + | f (s, ax(s), ' ()] + %

so that

u(s) — a(s)
1+ [u(s) — afs)|

1
m_
m

+

/lfmsu s))|ds <3K+ — (b a),
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which implies
lv'|| < 3K + = (b a)+/b R+ B(s) — afs) + = ds
- - S)— S —
hS - j — ,
in particular,
b
W< 3K+G=a)+ [ [R+66) - als)+ 1) ds =,
a

with ~ independent of m.
Then, for \ = 1, problem (3) has a solution u,, such that

a(t) — % < um(t) < B() + —;n— tel.

Repeating this procedure for all m € N, m > 1, we obtain a sequence
{um}5,, where uy, is a solution to problem

2'(t) = fm(t, z(t), 2/ (t)), tel,
z(a) = z(c), z(b) = z(d),
and
[l < max{|jel], B} + 1, lupll <,
so that the sequence {u,,} is bounded in C*(I) and
lum (O = [ fm (8, um (8), um (8)]]

is bounded, so that {u,} is equicontinuous in C(I). Thus, Arzels-
Ascoli Theorem implies the existence of a subsequence of {u,,} conver-
gent in C1(I) to a function u. Since

1 1
at) — - <um(t) < B(t)+ o for allt eI,
then
a(t) <wu(t) <B(t), tel.
Moreover, ||u/| < 7, or more specifically,
b
W] £ 3K +/ [R+ B(s) — a(s)] ds.

a

Function w is a solution to problem (1). d

REMARK 1. Theorem 2.1 extends Lemma 2 in [5], where constant
upper and lower solutions for (1) are considered.
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THEOREM 2.2. Suppose that «, § are, respectively, lower and upper
solutions of problem (1) such that o < 8 on I and that there exist real
numbers Ry, Ra, R3, Ry such that R; # Rs, Ry # Ry,

Ry, Ry < —max{|[/[|, [|8][},
Ry, Ry > max{||e|l, |5}
and
f(t,z,R2) >0, f(t,z,R1) <0, V¢t € [a,b], Vz € [a(t), B(t)],
f(t,z,R3) >0, f(t,z,R4) <0, fort € [d,b], x € [a(t), B()].

Then problem (1) has at least one solution satisfying, for every t € [a, b],
that

a(t) < u(t) < B(H),
min{Rl, Rg} S 'U/(t) S ma.x{Rg, R4}

Proof. Suppose that R3 < R; and R4 > Rs. Following the proof of
Theorem 1 in [5], we can choose ng € N such that, for all n € N, n > ng,
we have that

2 2
Ry + — < Ry, Ry — — > Rs.
n n
For n > ng, let

( f(t7$7R4)7 R4 <y,
f(taxay)7 R2+%SySR4a

f(t5x>R2+%)+w2a R2+%<Q<R2+%,

f(tax7R2)a R2 <ySR2+%‘7
hn(t,.’L’,y) = f(tax7y)7 Rl < Yy < R2;
f(t,"I?,R]), Rl—%gy<R1>

ftz,Ri—2)—w, Ri~2<y<R -3,

f(t,z,y), Ry<y< R -2,

\ f(t,.'l), R3)a y< R37
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where

wy = |:f <t7CL’,R2+z) —f(t;maR2):| n (y_R2__2—>’
n n

o= [1 (v~ 2) - ) (5o 2).

We check that problem
&) [ 2" = ha(t,5(0).2'(9), t€T =[]
| z(a) = z(c), z(b) = z(d)

is under the hypotheses of Theorem 2.1. Indeed,
b
[ attsvlde < K, for € a(o) B0 v € R
a
where

b
K= / sup{|hn(t,,y)| : @ € [alt), B(1)], y € R} dt.

Moreover, «, [ are, respectively, lower and upper solutions to problem
(5), since

o’(t) 2 f(t, alt), o (t)) = halt alt), &/(t), t € 1,

)=
B'(t) < f(t,8(1),8'(t)) = ha(t,8(t),8'(2)), t € I,
where we use that Ry < o/(t), f/(t) < Ry. Using Theorem 2.1, we get
that problem (5) has a solution wu,, satisfying

a(t) <un(t) < B(t),t € I
Now, we give estimates for «,. Since up(a) = un(c), un(d) = un(b), then
there exist af € (a,c) and by € (d,b) with u} (ag) = 0, up,(bg) = 0.
Suppose that max{uj,(t) : t € [a,b]]} = ul,(2§) > Ra+ =. Then 2§ #
by and there exists (¢ t") C (a,b}), with u},(t) = Rg, u,(t7) = Ro + 1
and Ry < ul(t) < Ry + %, for all t € (¢7,t2). Integrating u, in the
interval (t7,t5) and using the hypotheses on f, we obtain
1 1 n n t’g "
0>—-==HRy— R+ — uy, (£5) — u (t7) = U, (s)ds
n n t?
t3 3
B (8, un(s), up,(s)) ds = f(s,un(s), Rg)ds > 0,
Jip tn
which is a contradiction. If min{u;,(¢) : t € [a,b}]} = u, (zl) <Ry -1,
then 2 # b} and there exists (t7,t5) C (a,by), with u/ (t3) = Ri,
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u, (1) = Ri—2 and R1— 1 < w/,(t) < Ry, forall t € (¢, t7). Integrating
again, we get

tn
0< % =Ry — <R1 - %) = uy, (th) — ul,(t]) = /t ’ un(s)ds

P
24 t
= [ b, un(s), () ds = | F(s,un(s), Ra)ds <0,

& 7

another contradiction. We have proved that
1 1
Ri— ~ <uy(t) < Ry + —, forall t € [a, b).

Now, suppose that max{u,(t) : t € [b§,0]} = u;(2f) > Ry + &
Then z§ € (bf,0] and there exists (¢],t3) C (bo, b), with u),(¢}) = Ry,
upn(t3) = R4+ L, and Ry <2, (t)<R4+ 1 for all t € (¢7,12), so that

tn

0< L= Rit - Ry—ul(t)) (1) = / "l (s) ds
n n ¢

n
1

n

¢ 2
- /2 hn(8,Un(8), 1y (s)) ds = | F(5, un(s), Ra) ds < 0,
t t"

Wthh is absurd and, similarly, if min{w] (¢) : t € [b2,b]} = u/,(2}) <
R3— 2, then 2} € (b7, b] and there ex1sts (t’f,t”) C (bg,b), with u,(t3) =
Ry— 1w/ (#?) =Rz and R3 — X <w/(t) < Rs, for all t € (t7,t5). Thus

1 1 3
o>—E=R3—E—R?,=u;(tg)-u;(t )—/ wl(s) ds

1

t 2
= /t n(s un(‘s)v n( ))ds = i f(S,Un(S),Rg)ds >0,

T
which is again a contradiction. Therefore,
1 1
R3— = <u (t) < R4+ i te (8, ],
n

1 1 1 1
Ry—— <Ry — = <u,(t)<Ro+ =< Ry+—, t € [a,b],
n n n n

that is,
, 1 1, 1 1
min{ Ry, Rg}—— = Rg—— <, (t) < R4+— = max{ Ry, R4}+—, tel.

This proves that the sequence {un};/>° is bounded and equicontinuous
in CYI), so that there exists a subsequence convergent in C1(I) to a
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function u satisfying
a(t) < u(t) < B(t),
Rs </(t) < Ry
In consequence, u is a solution to equation
z"(t) = h(t,z(t),2'(t), tel,
z(a) = z(c), =(b) = z(d),

where
f(t,$aR4)a y>R4a
h(t,.’L’,y) = f(t7way)7 R3 SySR47
f(t,l’,R;g), y<R3>

but R3 < u/(t) < Ry, t € I, then u is a solution to (1) with
a(t) <u(t) < B(t),
min{ Ry, R3} = Rs < v/(t) < Ry = max{Ry, R4}

If R3 < Ry, Re < R4 is not true, then the proof can be completed
following a similar argument. O

The following result studies the case where Ry = R3, R2 = Ry.

THEOREM 2.3. Suppose that «, § are, respectively, lower and up-
per solutions of problem (1) such that « < (3 on I and that there
exist real numbers Ry, Ry, such that Ri < —max{||d/|, |5}, Rz >
max{l|c/|, [|8[|} and

f(t:z,Ry) 2 0, f(t,z,R1) <0, Vt € [a,b], Yz € [a(t), B(2)],
ft,z,R1) >0, f(t,z,R2) <0, fort € [d,b], z € [a(t), B(t)].
Then problem (1) has at least one solution satisfying
a(t) <u(t) < B(t), R <u'(t) <Ry, tel
Proof. Let

f(tvvaQ)a R2 <Y,
Atz y)=q ftz,y), Ri<y< Ry o =f(t=qy),
f(t,iL',Rl), y<R1)

where
q(y) = max{ Ry, min{y, R2}}.
In this case, for problem

(6) { z"(t) = h(t, z(2), 2 () = [, 2(t), ¢(2' (1)), t€I=]a,b],
z(a) = z(c), z(b) = z(d),
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the hypotheses of Theorem 2.1 hold. Indeed,

b
/ bt 2, )| dt < K, for o € [o(t), B(E)], y € R,
a
where

b
K :/ sup{|f(t,z,9)] : = € [a(t), B1)], v € [Ru, Ra]} dt.

The conditions on R; and Ry allow to prove that
o'(t) > f(t, at), &/ (t) = h(t, a(t),d (t)), t € 1,
B"(t) < f(t,8(),6'(t)) = h(t,8(t), B'(t)), t € 1,

so that functions «, 3 are, respectively, lower and upper solutions to
problem (6). '

Applying Theorem 2.1, we get that problem (6) has a solution u
satisfying

| at) < u(t) < BE),t € 1.
We prove that Ry < u/(t) < Ry, t € I. The boundary conditions imply
that u(a) = u(c), u(d) = u(b), then there exist ag € (a,c) and by € (d,b)
with u/(ag) = 0, v/ (bg) = 0.

Suppose that max{u/(t) : t € [a,bo]} = u/(20) > Ra. Then zy # bo
and there exists (t1,t2) C (a,bp), with u/(t2) = Ra, u/(t1) > Rs and
Ry < W/(t) < u/(ty), for all t € (t1,t2). Integrating v” in the interval
(t1,t2) and using the hypotheses, we get

0> Ry —/(t1) = v/ (t2) —u/(t1) = /t2 u"(s)ds

t
12 ' t2
— [ s uts) (s ds = [ fs,u(s), Ro)ds 20,
t1 t1
getting a contradiction. If min{v/(t) : t € [a,bo]} = v/(21) < Ry, then
21 # bp and there exists (t1,t2) C (a,bp), with «'(t2) = Ry, v/(t1) < Ry
and v/(t1) < u/(t) < Ry, for all ¢t € (t1,t2). Integrating again, we get

to
0< Ry —/(t1) = u/(ta) — /(t1) = /t W (s) ds

t2 t2
:/t h{s,u(s),u'(s))ds = t f(s,u(s),R1)ds <0,

again a contradiction. This provides that

Ry </(t) < Ry, for all t € [a, byl
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Now, suppose that max{u/(¢) : ¢ € [bo,b]} = u/(20) > Re. Then z €
(bo, b] and there exists (t1,t2) C (bo,b), with u'(t1) = Ry, u/(t2) > Ra,
and Ry < u/(t) < u/(t2), for all t € (£1,1t2), so that

to

0 < u/(ty) — Ra = /(ts) — /(t1) = /t o (s) ds

to t2

= / h(s,u(s),u'(s))ds = f(s,u(s), R2)ds <0,
t1 t1

which is absurd and, similarly, if min{w'(t) : ¢ € [bo, ]} = «'(21) < Ru,

then z; € (bg.b] and there exists (t1,t2) C (bo,b), with u'(f2) < Ru,

w'(t1) = Ry, and u'(t2) < u/(t) < Ry, for all t € (t1,%2), thus

2

0> 1/(ty) — Ry = /(t) — ' (t1) = / o (s) ds

t1

to to
= / h(s,u(s),u'(s))ds = f(s,u(s),R1)ds >0,
11 t
which is a contradiction.
In consequence,

Ry <4/(t) <Ry, t€,
and q(u'(t)) = «/(t), t € I, hence u is a solution to (1) with the properties
a(t) <ult) <B(t), tel,

Ry <u/(t) < Rg, tel
The proof is complete. O
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