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DERIVATION OF SOME INEQUALITIES USING THE

(p, q)-TH LOWER ORDER AND (p, q)-TH WEAK TYPE OF

ENTIRE FUNCTIONS

Tanmay Biswas, Sanjib Kumar Datta, and Jinarul Haque Shaikh

Abstract. The object of the present paper is to obtain new estimates
about the (p, q)-th lower order and (p, q)-th weak type of entire functions
under some interesting conditions.

1. Introduction

A single valued function of one complex variable which is analytic in the
finite complex plane is called an entire (integral) function. For example exp z,
sin z, cos z etc. are all entire functions. In the value distribution theory, one
studies how an entire function assumes some values and the influence of as-
suming certain values in some specific manner on a function. In 1926 Rolf
Nevanlinna initiated the value distribution theory of entire functions. This
value distribution theory is a prominent branch of Complex Analysis and is
the prime concern of this paper. Perhaps the Fundamental Theorem of Clas-
sical Algebra which states that “If f is a polynomial of degree n with real or
complex coefficients, then the equation f (z) = 0 has at least one root” is the
most well known value distribution theorem. The value distribution theory
deals with the various aspects of the behaviour of entire functions one of which
is the study of comparative growth properties of entire functions. For any en-

tire function f , Mf (r) of f =
∞
∑

n=0
anz

n on |z| = r, a function of r is defined as

follows:
Mf (r) = max

|z|=r
|f (z) |.

In this connection, we just recall the following well known inequalities for all
sufficiently large r relating to the maximum moduli of any two entire functions
fi and fj :

(1.1) Mfi±fj (r) < Mfi (r) +Mfj (r) ,
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(1.2) Mfi±fj (r) ≥ Mfi (r) −Mfj (r)

and

(1.3) Mfi·fj (r) ≤ Mfi (r) ·Mfj (r) .

On the other hand, if we consider zr to be a point on |z| = r, we have for
all sufficiently large values of r that

Mfi·fj (r) =max {|fi · fj (z)| : |z| = r} = max {|fi (z)| |fj (z)| : |z| = r}
i.e., Mfi·fj (r) ≥ |fi (zr)| |fj (zr)| .(1.4)

The order and lower order of an entire function f which are generally used
in computational purpose is defined in terms of the maximum modulus of f as

ρf = lim sup
r→∞

log[2]M (r, f)

log r
and λf = lim inf

r→∞

log[2] M (r, f)

log r
.

The concept of type has been introduced to determine the relative growth
of two entire functions with same non zero finite order. An entire function f
of order ρf

(

0 < ρf < ∞
)

, is said to be of type (0 ≤ σf ≤ ∞) if

σf = lim sup
r→∞

logMf (r)

rρf
.

Similarly, Datta and Jha [2] introduced the definition of weak type τ f
(0 ≤ τ f ≤ ∞) of an entire function of finite positive lower order in the fol-
lowing way:

τ f = lim inf
r→∞

logMf (r)

rλf
, 0 < λf < ∞.

The determination of the order of growth and type of entire functions are
very important to study the basic properties of the value distribution theory.
In this regard several researchers made close investigations on it. Accordingly,
Holland [3] and Levin [7] established the addition and multiplication theorems
of order and type under some different conditions.

Further in this paper we wish to prove addition and multiplication theorems
of lower order and weak type in the light of lower index-pairs and (p, q)-th lower
order of entire functions for any two positive integers p and q with p ≥ q whose
definitions have been given in Section 2 headed as “Preliminary remarks” of
the paper. We do not explain the standard definitions and notations in the
theory of entire functions as those are available in [9].

2. Preliminary remarks

Let f be an entire function defined in the open complex plane C andMf (r) =
max {|f (z)| : |z| = r}. In the sequel we use the following notation:

log[k] x = log
(

log[k−1] x
)

for k = 1, 2, 3, . . . and

log[0] x = x;
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and

exp[k] x = exp
(

exp[k−1] x
)

for k = 1, 2, 3, . . . and

exp[0] x = x.

The following definitions are well known:

Definition 2.1. The order ρf and lower order λf of an entire function f are
defined as follows:

ρf = lim sup
r→∞

log[2] Mf (r)

log r
and ρf = lim inf

r→∞

log[2] Mf (r)

log r
.

Definition 2.2 ([2]). The weak type τ f of an entire function f is defined as

τf = lim inf
r→∞

logMf (r)

rλf
, 0 < λf < ∞.

Sato [8] gave a more generalized concept of order( lower order) which is as
follows:

Definition 2.3 ([8]). Let l be an integer ≥ 2. The generalized order ρ
[l]
f

(respectively generalized lower order λ
[l]
f ) of an entire function f is defined as

ρ
[l]
f = lim sup

r→∞

log[l] Mf (r)

log r

(

respectively λ
[l]
f = lim inf

r→∞

log[l] Mf(r)

log r

)

.

When l = 2 , Definition 2.3 coincides with Definition 2.1.

Analogously, one may define the generalized weak type τ
[l]
f of an entire func-

tion f in the following manner:

τ
[l]
f = lim inf

r→∞

log[l−1] Mf (r)

rλ
[l]

f

, 0 < λ
[l]
f < ∞.

Juneja, Kapoor and Bajpai [4] defined the (p, q)-th order and (p, q)-th lower
order of an entire function f which are as follows:

ρf (p, q) = lim sup
r→∞

log[p] Mf(r)

log[q] r
and λf (p, q) = lim inf

r→∞

log[p] Mf(r)

log[q] r
,

where p, q are any two positive integers with p ≥ q. If p = l and q = 1, then we

write ρf (l, 1) = ρ
[l]
f and λf (l, 1) = λ

[l]
f . Also for p = 2 and q = 1, we denote

ρf (2, 1) and λf (2, 1) by ρf and λf respectively.
In the line of Juneja, Kapoor and Bajpai [5] one can introduced the concepts

of (p, q)-th weak type of entire function in order to compare the growth of entire
functions having the same (p, q)-th lower order in the following way:
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Definition 2.4 ([5]). The (p, q)-th weak type of entire function f having finite
positive (p, q) th lower order λf (p, q) (b < λf (p, q) < ∞) is defined as:

τ f (p, q) = lim inf
r→∞

log[p−1] Mf (r)
(

log[q−1] r
)λf (p,q)

, 0 ≤ τf (p, q) ≤ ∞,

where p, q are any two positive integers, b = 1 if p = q and b = 0 for p > q.
If p = 2 and q = 1, Definition 2.4 reduces to Definition 2.2. Similarly, if we

consider p = l and q = 1, then we write τ f (l, 1) = τ
[l]
f .

Similarly we use the growth indicator τ f (p, q) of entire function f having
finite positive (p, q) th lower order λf (p, q) (b < λf (p, q) < ∞) in the following
way

τ f (p, q) = lim sup
r→∞

log[p−1] Mf (r)
(

log[q−1] r
)λf (p,q)

, 0 ≤ τf (p, q) ≤ ∞,

where p, q are any two positive integers.

In this connection we just recalling that for any pair of integer numbers m,n
the Kroenecker function is defined by δm,n = 1 for m = n and δm,n = 0 for
m 6= n, the aforementioned properties provide the following definition:

Definition 2.5 ([4]). An entire function f is said to have index-pair (1, 1)
if 0 < ρf (1, 1) < ∞. Otherwise, f is said to have index-pair (p, q) 6= (1, 1),

p ≥ q ≥ 1, if δp−q,0 < ρf (p, q) < ∞ and ρf (p− 1, q − 1) /∈ R+.

Definition 2.6 ([4]). An entire function f is said to have lower index-pair
(1, 1) if 0 < λf (1, 1) < ∞. Otherwise, f is said to have lower index-pair
(p, q) 6= (1, 1), p ≥ q ≥ 1, if δp−q,0 < λf (p, q) < ∞ and λf (p− 1, q − 1) /∈ R+.

An entire function f of index-pair (p, q) is said to be of regular (p, q)-growth
if it coincides with its (p, q)-th lower order, otherwise f is said to be of irregular
(p, q)-growth.

Now we give the following proposition which is frequently used in the sequel:

Proposition 2.1. Let fi and fj be any two entire functions with lower index-

pair (pi, qi) and (pj, qj) respectively. Thus the following relations may occur:

(i) pi ≥ pj , qi = qj and λfi (pi, qi) > λfj (pj , qj),
(ii) pi ≥ pj , qi < qj and λfi (pi, qi) = λfj (pj , qj),
(iii) pi > pj , qi = qj and λfi (pi, qi) = λfj (pj , qj),
(iv) pi ≥ pj , qi < qj and λfi (pi, qi) > λfj (pj , qj),
(v) pi = pj , qi = qj and λfi (pi, qi) = λfj (pj , qj),
(vi) pi = pj , qi > qj and λfi (pi, qi) > λfj (pj , qj),
(vii) pi > pj , qi < qj and λfi (pi, qi) < λfj (pj , qj),
(viii) pi > pj , qi = qj and λfi (pi, qi) < λfj (pj , qj),
(ix) pi < pj , qi < qjand λfi (pi, qi) > λfj (pj, qj),

and
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(x) pi > pj , qi > qj and λfi (pi, qi) ≥ λfj (pj , qj).

In this connection the following definition is also relevant:

Definition 2.7 ([1]). A non-constant entire function f is said have the Prop-

erty (A) if for any σ > 1 and for all sufficiently large r, [Mf (r)]
2 ≤ Mf (r

σ)
holds.

For examples of functions with or without the Property (A), one may see
[1].

3. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 3.1 ([1]). Suppose that f be an entire function, α > 1, 0 < β < α,
s > 1 and 0 < µ < λ. Then

(a) Mf (αr) > βMf (r) and

(b) lim
r→∞

Mf (r
s)

Mf (r)
= ∞ = lim

r→∞

Mf(rλ)
Mf (rµ)

.

Lemma 3.2 ([1]). Let f be an entire function which satisfies the Property (A).
Then for any positive integer n and for all sufficiently large r,

[Mf (r)]
n ≤ Mf

(

rδ
)

holds where δ > 1.

Lemma 3.3 ([6], p. 21). Let f (z) be holomorphic in the circle |z| = 2eR (R >
0) with f (0) = 1 and η be an arbitrary positive number not exceeding 3e

2 . Then

inside the circle |z| = R, but outside of a family of excluded circles the sum of

whose radii is not greater than 4ηR, we have

log |f (z)| > −T (η) logMf (2eR)

for T (η) = 2 + log 3e
2η .

4. Main results

In this section we present the main results of the paper.

Theorem 4.1. Let fi and fj be any two entire functions with lower index-pairs

(pi, qi) and (pj, qj) respectively where pi, pj , qi, qj are all positive integers such

that pi ≥ qi and pj ≥ qj . Then

λ(fi±fj) (p, q) ≤ max
{

λfi (pi, qi) , λfj (pj , qj)
}

,

where p = max {pi, pj} and q = min {qi, qj} and at least fi is of regular (pi, qi)-
growth or fj is of regular (pj , qj)-growth.

The sign of equality holds when any one of the first four conditions of Propo-

sition 2.1 holds for i 6= j and fj is of regular (pj , qj)-growth.
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Proof. If λ(fi±fj) (p, q) = 0, then the result is obvious. So we suppose that
λ(fi±fj) (p, q) > 0.

We can clearly assume that λfk (pk, qk) is finite for k = i, j.
Now for any arbitrary ε > 0 from the definition of (pk, qk)-th lower order,

we have for a sequence of values of r tending to infinity that

(4.1) Mfk (r) ≤ exp[pk]
[

(λfk (pk, qk) + ε) log[qk] r
]

, where k = i, j,

i.e.,

Mfk (r) ≤ exp[max{p1,p2}]
[

(

max
{

λfi (pi, qi) , λfj (pj, qj)
}

+ ε
)

log[min{q1,q2}] r
]

,

where k = i, j, i.e.,

(4.2) Mfk (r) ≤ exp[p]
[

(

max
{

λfi (pi, qi) , λfj (pj , qj)
}

+ ε
)

log[q] r
]

,

where k = i, j.
Further, when fl is of regular (pl, ql)-growth for l = i, j and l 6= k, we get

for all sufficiently large values of r that

(4.3) Mfl (r) ≤ exp[pl]
[

(λfl (pl, ql) + ε) log[ql] r
]

, where l = i, j and l 6= k.

Therefore in view of (4.2) , we get for all sufficiently large values of r that

(4.4) Mfl (r) ≤ exp[p]
[

(

max
{

λfi (pi, qi) , λfj (pj , qj)
}

+ ε
)

log[q] r
]

,

where l = i, j and l 6= k.
So in view of (4.2) and (4.4) , we obtain from (1.1) for a sequence of values

of r tending to infinity that

(4.5) Mfi±fj (r) < 2 exp[p]
[

(

max
{

λfi (pi, qi) , λfj (pj , qj)
}

+ ε
)

log[q] r
]

.

Therefore in view of Lemma 3.1(a), we get from (4.5) for a sequence of values
of r tending to infinity that

1

2
Mfi±fj (r) < exp[p]

[

(

max
{

λfi (pi, qi) , λfj (pj , qj)
}

+ ε
)

log[q] r
]

i.e., Mfi±fj

(r

3

)

< exp[p]
[

(

max
{

λfi (pi, qi) , λfj (pj , qj)
}

+ ε
)

log[q] r
]

i.e.,
log[p] Mfi±fj

(

r
3

)

log[q]
(

r
3

)

+O(1)
<
(

max
{

λfi (pi, qi) , λfj (pj, qj)
}

+ ε
)

.

So

λfi±fj (p, q) = lim inf
r→∞

log[p] Mfi±fj

(

r
3

)

log[q]
(

r
3

)

+O(1)
≤
(

max
{

λfi (pi, qi) , λfj (pj, qj)
}

+ ε
)

.

Since ε > 0 is arbitrary,

(4.6) λfi±fj (p, q) ≤ max
{

λfi (pi, qi) , λfj (pj , qj)
}

.
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Now let any one of first four conditions of Proposition 2.1 holds for i 6= j, i = 1, 2
and j = 1, 2.

As ε (> 0) is arbitrary, from the definition of (pk, qk)-th lower order it follows
for all sufficiently large values of r that

(4.7) Mfk (r) ≥ exp[pk]
[

(λfk (pk, qk)− ε) log[qk] r
]

for k = i, j.

Therefore in view of the first four conditions of Proposition 2.1, we obtain for
all sufficiently large values of r that

(4.8) Mfi (r) ≥ exp[p]
[

(

max
{

λfi (pi, qi) , λfj (pj , qj)
}

− ε
)

log[q] r
]

.

Now we consider the expression

(4.9)
exp[pi]

[

(λfi (pi, qi)− ε) log[qi] r
]

exp[pj ]
[

(

λfj (pj , qj) + ε
)

log[qj ] r
] with i 6= j.

Therefore in view of the first four conditions of Proposition 2.1 and Lemma
3.1(b) we obtain from (4.9) that

(4.10) lim
r→∞

exp[pi]
[

(λfi (pi, qi)− ε) log[qi] r
]

exp[pj ]
[

(

λfj (pj , qj) + ε
)

log[qj ] r
] = ∞ with i 6= j.

Now (4.10) can also be written as

(4.11) lim
r→∞

exp[p]
[

(

max
{

λfi (pi, qi) , λfj (pj , qj)
}

− ε
)

log[q] r
]

exp[pj ]
[

(

λfj (pj , qj) + ε
)

log[qj ] r
] = ∞,

where p ≥ pj , q ≤ qj and max
{

λfi (pi, qi) , λfj (pj, qj)
}

≥ λfj (pj, qj) but all
the equalities do not hold simultaneously.

So from (4.11) , we obtain for all sufficiently large values of r that

exp[p]
[

(

max
{

λfi (pi, qi) , λfj (pj , qj)
}

− ε
)

log[q] r
]

> 2 exp[pj ]
[

(

λfj (pj , qj) + ε
)

log[qj ] r
]

.(4.12)

Thus from (4.3) , (4.8) and (4.12) we get for all sufficiently large values of r
that

Mfi (r) > 2 exp[pj ]
[

(

λfj (pj, qj) + ε
)

log[qj ] r
]

i.e., Mfi (r) > 2Mfj (r) , where i 6= j, i = 1, 2; j = 1, 2.(4.13)

So from (4.8), (4.13) and in view of Lemma 3.1(a) and (1.2) , it follows for all
sufficiently large values of r that

Mfi±fj (r) ≥ Mfi (r) −Mfj (r) with i 6= j

i.e., Mfi±fj (r) ≥ Mfi (r) −
1

2
Mfi (r) with i 6= j
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i.e., Mfi±fj (r) ≥
1

2
Mfi (r) with i 6= j

i.e., Mfi±fj (r) ≥
1

2
exp[p]

[

(

max
{

λfi (pi, qi) , λfj (pj, qj)
}

− ε
)

log[q] r
]

i.e., Mfi±fj (3r) ≥ exp[p]
[

(

max
{

λfi (pi, qi) , λfj (pj , qj)
}

− ε
)

log[q] r
]

.

This gives for all sufficiently large values of r that

log[p] Mfi±fj (3r)

log[q] (3r) +O(1)
≥
(

max
{

λfi (pi, qi) , λfj (pj , qj)
}

+ ε
)

i.e., lim inf
r→∞

log[p] Mfi±fj (3r)

log[q] (3r) +O(1)
≥ max

{

λfi (pi, qi) , λfj (pj, qj)
}

i.e., λfi±fj (p, q) = lim inf
r→∞

log[p] Mfi±fj (r)

log[q] r
= lim inf

r→∞

log[p] Mfi±fj (3r)

log[q] (3r) +O(1)

≥ max
{

λfi (pi, qi) , λfj (pj , qj)
}

.(4.14)

So the conclusion of the second part of the theorem follows from (4.6) and
(4.14). �

Remark 4.1. The inequality sign in Theorem 4.1 cannot be removed which is
evident from the following example:

Example 4.1. Given any two natural numbers l,m, the functions f(z) =
exp[l] zm and g(z) = − exp[l] zm have their maximum moduli respectively as

Mf (r) = exp[l] rm and Mg (r) = exp[l] rm. Therefore
log[k] Mf (r)

log r and
log[k] Mg(r)

log r

are both constants for each natural number k ≥ 2. Thus it follows that

λ
[l+1]
f = λ[l+1]

g = m

but λ
[k]
f = λ[k]

g = +∞ for 2 ≤ k ≤ l and λ
[k]
f = λ

[k]
f = 0 for k > l + 1.

Therefore

λ
[l+1]
f+g = 0 < λ

[l+1]
f + λ[l+1]

g = 2m.

Theorem 4.2. Let fi and fj be any two entire functions with lower index-pairs

(pi, qi) and (pj, qj) respectively where pi, pj , qi, qj are all positive integers such

that pi ≥ qi and pj ≥ qj . Further suppose that λfi (pi, qi) and λfj (pj , qj) are

both non zero and finite. Then for p = max {pi, pj} and q = min {qi, qj} ,

τ fi±fj (p, q) = τfi (pi, qi) ,

when any one of the first four conditions of Proposition 2.1 holds for i 6= j and

fj is of regular (pj , qj)-growth.
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Proof. Suppose that any one of the first four conditions of Proposition 2.1 holds
for i 6= j. Also let ε (> 0) and ε1 (> 0) be arbitrary.

Now from the definition of (pk, qk)-weak type, we have for a sequence of
values of r tending to infinity that
(4.15)

Mfk (r) ≤ exp[pk−1]

{

(τfk (pk, qk) + ε)
(

log[qk−1] r
)λfk

(pk,qk)
}

for k = i, j,

and for all sufficiently large values of r we obtain that
(4.16)

Mfk (r) ≥ exp[pk−1]

{

(τfk (pk, qk)− ε)
(

log[qk−1] r
)λfk

(pk,qk)
}

for k = i, j.

Similarly from the definition of τ fk (pk, qk), we get for all sufficiently large
values of r that
(4.17)

Mfk (r) ≤ exp[pk−1]

{

(τfk (pk, qk) + ε)
(

log[qk−1] r
)λfk

(pk,qk)
}

for k = i, j.

Therefore from (1.1) , (4.15) and (4.17) we get for a sequence of values of r
tending to infinity that

Mfi±fj (r) ≤ exp[pi−1]

{

(τfi (pi, qi) + ε)
(

log[qi−1] r
)λfi

(pi,qi)
}

×









1 +

exp[pj−1]

{

(

τ fj (pj , qj) + ε
)

(

log[qj−1] r
)λfj

(pj ,qj)
}

exp[pi−1]

{

(τfi (pi, qi) + ε)
(

log[qi−1] r
)λfi

(pi,qi)
}









,(4.18)

where i 6= j.
Now in view of any one of the first four conditions of Proposition 2.1 for

i 6= j and for all sufficiently large values of r, we can make the term








1 +

exp[pj−1]

{

(

τfj (pj , qj) + ε
)

(

log[qj−1] r
)λfj

(pj ,qj)
}

exp[pi−1]

{

(τ fi (pi, qi) + ε)
(

log[qi−1] r
)λfi

(pi,qi)
}









sufficiently small.
Hence for any α > 1 + ε1, it follows from Lemma 3.1(a) and (4.18) for a

sequence of values of r tending to infinity that

Mfi±fj (r) ≤ exp[pi−1]

{

(τ fi (pi, qi) + ε)
(

log[qi−1] r
)λfi

(pi,qi)
}

(1 + ε1)

i.e.,
1

(1 + ε1)
Mfi±fj (r) ≤ exp[pi−1]

{

(τfi (pi, qi) + ε)
(

log[qi−1] r
)λfi

(pi,qi)
}
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(4.19) i.e., Mfi±fj (r) ≤ exp[pi−1]

{

α (τ fi (pi, qi) + ε)
(

log[qi−1] r
)λfi

(pi,qi)
}

.

Thus from (4.19) , it follows for a sequence of values of r tending to infinity
that
(4.20)

Mfi±fj (r) ≤ exp[p−1]

{

α (τ fi (pi, qi)+ε)
(

log[q−1] r
)max{λf1

(p1,q1),λf2
(p2,q2)}}

.

Therefore in view of Theorem 4.1, we have from (4.20) and for a sequence of
values of r tending to infinity that

log[p−1] Mfi±fj (r) ≤ α (τ fi (pi, qi) + ε)
(

log[q−1] r
)max{λf1

(p1,q1),λf2
(p2,q2)}

i.e.,
log[p−1] Mfi±fj (r)

[

log[q−1] (r)
]λ(f1±f2)(p,q)

(4.21) ≤
α (τfi (pi, qi) + ε)

(

log[q−1] r
)max{λf1

(p1,q1),λf2
(p2,q2)}

[

log[q−1] (r)
]max{λf1

(p1,q1),λf2
(p2,q2)} .

Hence making α → 1+, we obtain from (4.21) for a sequence of values of r
tending to infinity that

lim inf
r→∞

log[p−1] Mfi±fj (r)

[log (r)]
λ(f1±f2)(p,q)

≤ τ fi (pi, qi)

(4.22) i.e., τfi±fj (p, q) ≤ τ fi (pi, qi) .

Again from (1.2) , (4.16) and (4.17) we get for all sufficiently large values of r
that

Mfi±fj (r) ≥ exp[pi−1]

{

(τfi (pi, qi)− ε)
(

log[qi−1] r
)λfi

(pi,qi)
}

×









1−
exp[pj−1]

{

(

τ fj (pj , qj) + ε
)

(

log[qj−1] r
)λfj

(pj ,qj)
}

exp[pi−1]

{

(τfi (pi, qi)− ε)
(

log[qi−1] r
)λfi

(pi,qi)
}









,(4.23)

where i 6= j.
Now in view of any one of the first four conditions of Proposition 2.1 for

i 6= j and for all sufficiently large values of r, we can make the term








1−
exp[pj−1]

{

(

τfj (pj , qj) + ε
)

(

log[qj−1] r
)λfj

(pj ,qj)
}

exp[pi−1]

{

(τ fi (pi, qi)− ε)
(

log[qi−1] r
)λfi

(pi,qi)
}








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sufficiently small.
Hence for any β > 1

1−ε1
, it follows from Lemma 3.1(a) and (4.23) for all

sufficiently large values of r that

Mfi±fj (r) ≥ exp[pi−1]

{

(τ fi (pi, qi)− ε)
(

log[qi−1] r
)λfi

(pi,qi)
}

(1− ε1)

i.e.,
1

(1− ε1)
Mfi±fj (r) ≥ exp[pi−1]

{

(τfi (pi, qi)− ε)
(

log[qi−1] r
)λfi

(pi,qi)
}

(4.24) i.e., Mfi±fj (βr) ≥ exp[pi−1]

{

(τ fi (pi, qi)− ε)
(

log[qi−1] r
)λfi

(pi,qi)
}

.

Therefore in view of the first four conditions of Proposition 2.1 for i 6= j, it
follows from (4.24) for all sufficiently large values of r that

Mfi±fj (βr) ≥ exp[p−1]

{

(τ fi (pi, qi)− ε)
(

log[q−1] r
)max{λf1

(p1,q1),λf2
(p2,q2)}}

.

Hence making β → 1+, we get from above that

(4.25) lim inf
r→∞

log[p−1] Mfi±fj (r)
[

log[q−1] (r)
]max{λf1

(p1,q1),λf2
(p2,q2)} ≥ τ fi (pi, qi) .

Thus in view of Theorem 4.1, we obtain from (4.25) that

lim inf
r→∞

log[p−1] Mfi±fj (r)
[

log[q−1] (r)
]λ(f1±f2)(p,q)

≥ τ fi (pi, qi)

(4.26) i.e., τ fi±fj (p, q) ≥ τ fi (pi, qi) .

Thus the theorem follows from (4.22) and (4.26) . �

In the next theorem we wish to find out the condition for which the equality
sign of Theorem 4.1 holds in the case of Proposition 2.1(v).

Theorem 4.3. Let f1 and f2 be any two entire functions such that λf1 (p, q) =
λf2 (p, q) (0 < λf1 (p, q) = λf2 (p, q) < ∞) and τ f1 (p, q) 6= τf2 (p, q) . Then

λf1±f2 (p, q) = λf1 (p, q) = λf2 (p, q) ,

where p, q are any two positive integers with p ≥ q, (f1 ± f2) is of regular

(p, q)-th growth and at least f1 or f2 is also of regular (p, q)-th growth.

Proof. Suppose that λf1 (p, q) = λf2 (p, q) (0 < λf1 (p, q) = λf2 (p, q) < ∞) and
τ f1 (p, q) 6= τ f2 (p, q) .

Now in view of Theorem 4.1, it is easy to see that

λf1±f2 (p, q) ≤ λf1 (p, q) = λf2 (p, q) .

If we consider
λf1±f2 (p, q) < λf1 (p, q) = λf2 (p, q) ,
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then in view of Theorem 4.2, we obtain that

τ f1 (p, q) = τf1±f2∓f2 (p, q) = τ f2 (p, q)

which is a contradiction.
Hence

λf1±f2 (p, q) = λf1 (p, q) = λf2 (p, q) .

Thus the theorem follows. �

Theorem 4.4. Let fi and fj be any two entire functions with lower index-pairs

(pi, qi) and (pj, qj) respectively where pi, pj , qi, qj are all positive integers such

that pi ≥ qi and pj ≥ qj . Then

λfi·fj (p, q) ≤ max
{

λfi (pi, qi) , λfj (pj , qj)
}

,

where p = max {pi, pj} and q = min {qi, qj} and at least fi is of regular (pi, qi)-
growth or fj is of regular (pj , qj)-growth.

The sign of equality holds when any one of the first four conditions of Propo-

sition 2.1 holds for i 6= j and fj is of regular (pj , qj)-growth.

Proof. Suppose that λ(fi·fj) (p, q) > 0. Otherwise if λ(fi·fj) (p, q) = 0, then the
result is obvious.

Also suppose that max
{

λfi (pi, qi) , λfj (pj , qj)
}

= λ.
We can clearly assume that λfk (pk, qk) is finite for k = i, j.
Now for any arbitrary ε

2 > 0, we obtain in view of (4.2) and for a sequence
of values of r tending to infinity that

(4.27) Mfk (r) ≤ exp[p]
[(

λ+
ε

2

)

log[q] r
]

, k = i, j.

Also for any arbitrary ε
2 > 0, we obtain in view of (4.3) and for all sufficiently

large values of r that

(4.28) Mfl (r) ≤ exp[p]
[(

λ+
ε

2

)

log[q] r
]

, where l = i, j and l 6= k.

Further we consider the expression
exp[p−1][(λ+ε) log[q] r]
exp[p−1][(λ+ ε

2
) log[q] r]

for all sufficiently

large values of r.
Thus for any δ > 1, it follows from the above expression for all sufficiently

large values of r, say r ≥ r1 ≥ r0 that

(4.29)
exp[p−1]

[

(λ+ ε) log[q] r0

]

exp[p−1]
[

(

λ+ ε
2

)

log[q] r0

] = δ.

Now from (4.27) , (4.28) and in view of (1.3), we have for a sequence of values
of r tending to infinity that

(4.30) Mfi·fj (r) <
[

exp[p]
[(

λ+
ε

2

)

log[q] r
]]2

.
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Also in view of Lemma 3.2, we obtain from (4.29) and (4.30) for a sequence of
values of r tending to infinity that

Mfi·fj (r) < exp[p]
[(

λ+
ε

2

)

log[q] r
]δ

i.e., Mfi·fj (r) < exp[p]
[

(λ+ ε) log[q] r
]

.

Therefore from above, we get that

log[p] Mfi·fj (r)

log[q] r
≤ (λ+ ε) .

So

λfi·fj (p, q) = lim inf
r→∞

log[p] Mfi·fj (r)

log[q] r
≤ (λ+ ε) .

Since ε > 0 is arbitrary,

(4.31) λfi·fj (p, q) ≤ λ = max
{

λfi (pi, qi) , λfj (pj , qj)
}

.

Now let any one of first four conditions of Proposition 2.1 hold for i 6= j and
fj is of regular (pj , qj)-growth.

Without loss of any generality, we may assume that fk (0) = 1 where k = i, j.
Also we may suppose that r > R.
Now from (4.7) and in view of the first four conditions of Proposition 2.1,

we obtain for all sufficiently large values of R that

(4.32) Mfi (R) ≥ exp[p]
[

(λ− ε) log[q] R
]

.

Also from (4.3) , we get for all sufficiently large values of r that

(4.33) Mfj (r) ≤ exp[p]
[

(λ+ ε) log[q] r
]

.

Thus in view of Lemma 3.3, if we take fj (z) for f (z), η = 1
16 and 2R for R, it

follows that

log |fj (z)| > −T (η) logMfj (2e · 2R) ,

where

T (η) = 2 + log

(

3e

2. 1
16

)

= 2 + log (24e) .

Therefore

log |fj (z)| > − (2 + log (24e)) logMfj (4e · R)

holds within and on |z| = 2R but outside a family of excluded circles the sum
of whose radii is not greater than

4 · 1

16
· 2R =

R

2
.

If r ∈ (R, 2R), then on |z| = r

(4.34) log |fj (z)| > −7 logMfj (4e · R) .
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Since r > R, we have from (4.32) for all sufficiently large values of r that

Mfi (r) > Mfi (R) > exp[p]
[

(λ− ε) log[q] R
]

> exp[p]
[

(λ− ε) log[q]
r

2

]

.(4.35)

Now let zr be a point on |z| = r such that Mfi (r) = |fi (zr)| .
Therefore as r > R, from (1.3) , (4.33) , (4.34) and (4.35) it follows for all

sufficiently large values of r that

Mfi·fj (r) ≥ |fj (zr)|Mfi (r)

(4.36) i.e., Mfi·fj (r) ≥
[

Mfj (4eR)
]

−7
Mfi (r)

i.e.,

Mfi·fj (r) ≥
[

exp[p]
[

(λ+ ε) log[q] (4eR)
]]

−7

× exp[p]
[

(λ− ε) log[q]
(r

2

)]

i.e.,
(4.37)

Mfi·fj (r) ≥
[

exp[p]
[

(λ+ ε) log[q] (4er)
]]

−7

× exp[p]
[

(λ− ε) log[q]
(

4er

8e

)]

.

As we have

exp[p−1]
[

(λ− ε) log[q]
(

4er
8e

)

]

exp[p−1]
[

(λ+ ε) log[q] (4er)
] → ∞ as r → ∞,

we may write for all sufficiently large values of r with rn > r1 > r0,

log
[

(λ− ε) log[q]
(

4ern
8e

)

]

log
[

(λ+ ε) log[q] (4ern)
] >

log
[

(λ− ε) log[q]
(

4er0
8e

)

]

log
[

(λ+ ε) log[q] (4er0)
] = δ ( say).

Therefore, clearly
δ > 1.

Hence for the above value of δ, one can easily verify that

(4.38) exp[p]
[

(λ− ε) log[q]
(

4er

8e

)]

≥ exp[p]
[

[

(λ+ ε) log[q] (4er)
]δ
]

.

Also from Lemma 3.2, we get for all sufficiently large values of r that

(4.39) exp[p]
[

[

(λ+ ε) log[q] (4er)
]δ
]

≥
[

exp[p]
[

(λ+ ε) log[q] (4er)
]]8

.

Now from (4.37) , (4.38) and (4.39) , it follows for all sufficiently large values of
r that

Mfi·fj (r) ≥ exp[p]
[

(λ+ ε) log[q] (4er)
]

i.e.,
log[p] Mfi·fj (r)

log[q] r +O(1)
≥ λ+ ε
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i.e., λfi·fj (p, q) = lim inf
r→∞

log[p] Mfi·fj (r)

log[q] r

≤ λ = max
{

λfi (pi, qi) , λfj (pj, qj)
}

.(4.40)

Consequently the second part of the theorem follows from (4.31) and (4.40). �

Remark 4.2. The following example shows that the inequality sign in Theorem
4.4 cannot be removed:

Example 4.2. Given any two natural numbers k, n, the functions f(z) =
exp[k] zn and g(z) = exp[k] (−zn) have their maximum moduli respectively

as Mf (r) = exp[k] rn and Mg (r) = exp[k] (−rn). Therefore
log[l] Mf (r)

log r and

log[ll] Mg(r)
log r are both constants for each natural l ≥ 2. Thus it follows that

λ
[k+1]
f = λ[k+1]

g = n

but λ
[l]
f = λ[l]

g = +∞ for 2 ≤ l ≤ k and ρ
[l]
f = ρ

[l]
f = 0 for l > k + 1.

Hence

λ
[k+1]
f ·g = 0 < λ

[k+1]
f + λ[k+1]

g = 2n.

Theorem 4.5. Let fi and fj be any two entire functions with lower index-pairs

(pi, qi) and (pj, qj) respectively where pi, pj , qi, qj are all positive integers such

that pi ≥ qi and pj ≥ qj . Further suppose that λfi (pi, qi) and λfj (pj , qj) are

both non zero and finite. Then for p = max {pi, pj} and q = min {qi, qj}

τ fi·fj (p, q) = τfi (pi, qi) ,

when any one of the first four conditions of Proposition 2.1 holds for i 6= j,
q > 1 and fj is of regular (pj , qj)-growth.

Proof. Suppose that τ fi·fj (p, q) > 0. Otherwise if τfi·fj (p, q) = 0 then the
result is obvious.

We can clearly assume that τfk (pk, qk) for k = i, j is finite. Also suppose any
one of the first four conditions of Proposition 2.1 holds for i 6= j. Also suppose
that max

{

λfi (pi, qi) , ρλfj (pj , qj)
}

= λfi (pi, qi) = λ and τ fi (pi, qi) = τ.
Further let ε (> 0) and ε1 (> 0) are arbitrary.

We now consider the expression
exp[p−2](τ+ε)(log[q−1] r)

λ

exp[p−2](τ+ ε
2
)(log[q−1] r)

λ for all sufficiently

large values of r.
Thus for any δ > 1, it follows from the above expression for all sufficiently

large values of r, say r ≥ r1 ≥ r0 that

(4.41)
exp[p−2] (τ + ε)

(

log[q−1] r0

)λ

exp[p−2]
(

τ + ε
2

)

(

log[q−1] r0

)λ
= δ.
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Now in view of (1.3) , we have from (4.15) and (4.17) for a sequence of values
of r tending to infinity that

Mfi·fj (r) ≤ exp[pi−1]

[

(

τ fi (pi, qi) +
ε

2

)(

log[qi−1] r
)λfi

(pi,qi)
]

· exp[pj−1]

[

(

τfj (pj , qj) +
ε

2

)(

log[qj−1] r
)λfj

(pj ,qj)
]

i.e., Mfi·fj (r) ≤ exp[p−1]

{

(

τ +
ε

2

)(

log[q−1] r
)λ
}

· exp[pj−1]

[

(

τfj (pj , qj) +
ε

2

)(

log[qj−1] r
)λfj

(pj ,qj)
]

.

Now in view of any one of the first four conditions of Proposition 2.1 for i 6= j
and for all sufficiently large values of r, we get that

exp[p−1]

{

(

τ +
ε

2

)(

log[q−1] r
)λ
}

> exp[pj−1]

[

(

τfj (pj , qj) +
ε

2

)(

log[qj−1] r
)λfj

(pj ,qj)
]

and therefore from above and (4.41) it follows for a sequence of values of r
tending to infinity that

Mfi·fj (r) ≤ exp[p−1]

[

(

τ +
ε

2

)(

log[q−1] r
)λ
]2

i.e., Mfi·fj (r) ≤ exp[p−1]

[

(τ + ε)
(

log[q−1] r
)λ
]

.

Now in view of Theorem 4.4, we get from above for a sequence of values of r
tending to infinity that

log[p−1] Mfi·fj (r)
(

log[q−1] r
)λ

< (τ + ε)

i.e., lim inf
r→∞

log[p−1] Mfi·fj (r)
(

log[q−1] r
)λfi·fj

(p,q)
≤ τ + ε

Since ε > 0 is arbitrary,

(4.42) τ fi·fj (p, q) ≤ τfi (pi, qi) .

Now without loss of any generality, we may assume fk (0) = 1 where k = i, j.
Also let r > R.
Now from (4.16) , we obtain for all sufficiently large values of R that

(4.43) Mfi (R) ≥ exp[p−1]

{

(τ fi (pi, qi)− ε)
(

log[q−1] R
)λ
}

.
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Also from (4.17) we have for all sufficiently large values of r that

Mfj (r) ≤ exp[pj−1]

{

(

τ fj (pj , qj) + ε
)

(

log[qj−1] r
)λfj

(pj ,qj)
}

.

Since in view of any one of the first four conditions of Proposition 2.1,

exp[pj−1]

{

(

τ fj (pj, qj) + ε
)

(

log[qj−1] r
)λfj

(pj ,qj)
}

< exp[p−1]

{

(τ + ε)
(

log[q−1] r
)λ
}

,

we get from above for all sufficiently large values of r that

(4.44) Mfj (r) < exp[p−1]

{

(τ + ε)
(

log[q−1] r
)λ
}

.

Since r > R, we have from (4.43) for all sufficiently large values of r that

Mfi (r) > Mfi (R) > exp[p−1]

{

(τ − ε)
(

log[q−1] R
)λ
}

> exp[p−1]

{

(τ − ε)
(

log[q−1] r

2

)λ
}

.(4.45)

Further let zr be a point on |z| = r such that Mfi (r) = |fi (zr)| .
Therefore as r > R, from (4.36) , (4.44) and (4.45) it follows for all sufficiently

large values of R that

Mfi·fj (r)

≥
[

exp[p−1]

{

(τ + ε)
(

log[q−1] 4eR
)λ
}]

−7

· exp[p−1]

{

(τ − ε)
(

log[q−1] r

2

)λ
}

i.e., Mfi·fj (r) ≥
[

exp[p−1]

{

(τ + ε)
(

log[q−1] 4er
)λ
}]

−7

× exp[p−1]

{

(τ − ε)

(

log[q−1] 4er

8e

)τ}

.(4.46)

Now we have

exp[p−2]

{

(τ − ε)
(

log[q−1] 4er
8e

)λ
}

exp[p−2]

{

(τ + ε)
(

log[q−1] 4er
)λ
} → ∞ as r → ∞.

So we may write for all sufficiently large values of r with rn > r1 > r0,

log

{

(τ − ε)
(

log[q−1] 4ern
8e

)λ
}

log

{

(τ + ε)
(

log[q−1] 4ern

)λ
} >

log

{

(τ − ε)
(

log[q−1] 4er0
8e

)λ
}

log

{

(τ + ε)
(

log[q−1] 4er0

)λ
}
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= δ (say).

Therefore clearly

δ > 1.

So for the above value of δ, one can easily verify that

exp[p−1]

{

(τ − ε)

(

log[q−1] 4er

8e

)λ
}

≥ exp[p−1]

[

{

(τ + ε)
(

log[q−1] 4er
)λ
}δ
]

.(4.47)

Also from Lemma 3.2, we get for all sufficiently large values of r that

exp[p−1]

[

{

(τ + ε)
(

log[q−1] 4er
)λ
}δ
]

≥
[

exp[p−1]

{

(τ + ε)
(

log[q−1] 4er
)λ
}]8

.(4.48)

Now in view of in view of Theorem 4.4, it follows from (4.46) , (4.47) and (4.48)
for all sufficiently large values of r that

Mfi·fj (r) ≥ exp[p−1]

{

(τ + ε)
(

log[q−1] 4er
)λ
}

i.e.,
log[p−1] Mfi·fj (r)
(

log[q−1] 4er
)ρ ≥ (τ + ε)

i.e., lim sup
r→∞

log[p−1] Mfi·fj (r)
(

log[q−1] r +O(1)
)λfi·fj

(p,q)
≥ τ + ε, when q > 1.

(4.49) i.e., τfi·fj (p, q) ≥ max
{

τ fi (pi, qi) , τfj (pj , qj)
}

when q > 1.

So the theorem follows from (4.42) and (4.49). �

In the next theorem we wish to find out the condition for which the equality
sign of Theorem 4.4 hold in case of Proposition 2.1(v).

Theorem 4.6. Let f1 and f2 be any two entire functions such that λf1 (p, q) =
λf2 (p, q) (0 < λf1 (p, q) = λf2 (p, q) < ∞) and τ f1 (p, q) 6= τf2 (p, q) . Then

λf1·f2 (p, q) = λf1 (p, q) = λf2 (p, q) ,

where p, q are any two positive integers with p ≥ q > 1, (f1 · f2) is of regular

(p, q)-th growth and at least f1 or f2 is also of regular (p, q)-th growth.

The proof of Theorem 4.6 is omitted as it can be carried out in the line of
Theorem 4.3.



DERIVATION OF SOME INEQUALITIES 763

5. Conclusion

In Theorem 4.1, Theorem 4.2, Theorem 4.4 and Theorem 4.5 of the present
paper, the authors have discussed about the limiting value of the lower bound
under any one of the first four conditions of Proposition 2.1. On the other
hand, in Theorem 4.3 and Theorem 4.6, the present authors have also find out
the limiting value of the lower bound in case of Proposition 2.1 (v) under some
different conditions. Now question may arise about the limiting value of the
lower bound when any one of the last five cases of Proposition 2.1 is considered
and this may be a further scope of study for the future researchers in this
branch.
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