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MOMENTS OF LOWER GENERALIZED ORDER
STATISTICS FROM DOUBLY TRUNCATED

CONTINUOUS DISTRIBUTIONS AND
CHARACTERIZATIONS

Devendra Kumar*

Abstract. In this paper, we derive recurrence relations for mo-
ments of lower generalized order statistics within a class of doubly
truncated distributions. Inverse Weibull, exponentiated Weibull,
power function, exponentiated Pareto, exponentiated gamma, gen-
eralized exponential, exponentiated log-logistic, generalized inverse
Weibull, extended type I generalized logistic, logistic and Gumble
distributions are given as illustrative examples. Further, recurrence
relations for moments of order statistics and lower record values are
obtained as special cases of the lower generalized order statistics,
also two theorems for characterizing the general form of distribu-
tion based on single moments of lower generalized order statistics
are given.

1. Introduction

Kamps [11] introduced the concept of generalized order statistics
(gos). It is know that ordinary order statistics, upper record values
and sequential order statistics are special cases of gos. In this paper
we will consider the lower generalized order statistics (lgos). It can be
shown that order statistics, lower record values are special cases of lgos.

Let n ∈ N , k ≥ 1, m ∈ <, be the parameters such that

γr = k + (n− r)(m + 1)> 0,

for all 1 ≤ r ≤ n. Then X∗(1, n, m, k), · · · , X∗(n, n, m, k) are n lgos
from an absolutely continuous distribution function (df)F (x) with the
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corresponding probability density function (pdf) f(x). Their joint pdf
is

(1.1) k
( n−1∏

j=1

γj

)( n−1∏

i=1

[F (xi)]mif(xi)
)
[F (xn)]k−1f(xn)

on the cone

F−1(1) > x1 ≥ x2 ≥ . . . ≥ xn > F−1(0).

For simplicity we shall assume m1 = m2 = · · · = mn−1 = m.
The marginal pdf of the r−th lgos, X∗(r, n,m, k) is

(1.2) fX∗(r,n,m,k)(x) =
Cr−1

(r − 1)!
[F (x)]γr−1f(x)gr−1

m (F (x))

and the joint pdf of X∗(r, n, m, k) and X∗(s, n,m, k), 1 ≤ r < s ≤ n is
expressed from (1.1) as

fX∗(r,n,m,k),X∗(s,n,m,k)(x, y) =
Cs−1

(r − 1)!(s− r − 1)!
[F (x)]mf(x)gr−1

m (F (x))

× [hm(F (y))− hm(F (x))]s−r−1[F (y)]γs−1f(y), x > y,

(1.3)

where

Cr−1 =
r∏

i=1

γi , γi = k + (n− i)(m + 1),

hm(x) =
{
− 1

m+1
xm+1, m 6=−1

−lnx, m=−1

and
gm(x) = hm(x)− hm(1), x ∈ [0, 1).

We shall also take X∗(0, n,m, k) = 0. If m = 0, k = 1, then X∗(r, n, m, k)
reduced to the (n− r + 1)−th order statistics, Xn−r+1:n from the sam-
ple X1, X2, . . . , Xn and when m = −1, then X∗(r, n, m, k) reduced to
the r− th lower k record value [Pawlas and Szynal, [17]]. The work of
Burkschat et al. [5] may also refer for lower generalized order statistics.
Recurrence relations are interesting in their own right. They are use-
ful in reducing the number of operations necessary to obtain a general
form for the function under consideration. Furthermore, they are used
in characterizing distributions, which in important area, permitting the
identification of population distribution from the properties of the sam-
ple.
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Many recurrence relations between moments of generalized order sta-
tistics are available in the literature. Reference may be made to Cramer
and Kamps [6], Pawlas and Szynal [17], Ahmad and Fawzy [4], Ahmad
[2], Khan et al. [16] and references therein.

Characterizations of particular distributions based on the moments
and conditional moments of order statistics were presented by some au-
thors such as Wu and Ouyang [18], Grudzien and Szynal [9], Khan and
Abouammoh [14], Ahmad [1], Govindarajulu [8], amongs others.

Characterizations based on gos have been studied by some authors.
Keseling [13] characterized some continuous distributions based on con-
ditional distributions of gos. Bieniek and Szynal [4] characterized some
distributions via linearity of regression of gos. Cramer et al. [7] gave
a unifying approach on characterization via linear regression of ordered
random variables. Khan et al. [15] characterized some continuous dis-
tributions through conditional expectation of functions of gos.

Kamps [12] investigated the importance of recurrence relations of
order statistics in characterization.

The doubly truncated case of a distribution is the most general case
since it includes the right, left and non-truncated distribution as special
cases.

Now if for given P1 and Q1

(1.4)
∫ Q1

−∞
f1(x)dx = Q and

∫ P1

−∞
f1(x)dx = P,

where f1(x) is the pdf of X. Then the truncated pdf is given by

f(x) =
f1(x)
P −Q

, x ∈ (Q1, P1)

and the corresponding df by

F (x) =
1

P −Q
[F1(x)−Q], x ∈ (Q1, P1).

Suppose the distribution function is of the following general form

(1.5) F1(x) = e−a/h(x), x ∈ (α, β),

where a 6= 0 is a constant and h(x) is continuous, monotonic and differ-
entiable function of x in the interval [α, β]. Then truncated pdf f(x) is
given by

(1.6) f(x) =
a

(P −Q)h2(x)
e−a/h(x)h′(x), x ∈ (Q1, P1)
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and the corresponding truncated pdf f(x) by

(1.7) F (x) = −Q2 +
h2(x)
ah′(x)

f(x),

where

Q2 =
Q

P −Q
.

2. Recurrence relations for single moments

Theorem 2.1. For the distribution given in (1.7), n ∈ N, 2 ≤ r ≤
n, k ≥ 1, and m > −1

E[X∗j(r, n,m, k)]− E[X∗j(r − 1, n, m, k)]

=
j

aγr

{
QE[φ(X∗(r, n, m, k))ea/h(X∗(r,n,m,k))]−E[φ(X∗(r, n, m, k))]

}
,

m 6= −1

(2.1)

and for m = −1

E[X∗j(r, n,−1, k)]− E[X∗j(r − 1, n,−1, k)]

=
j

ak

{
QE[φ(X∗(r, n,−1, k))ea/h(X∗(r,n,−1,k))]− E[φ(X∗(r, n,−1, k))]

}
.

(2.2)

where

φ(x) =
xj−1h2(x)

h′(x)
.

Proof. We have from (1.2)
(2.3)

E[X∗j(r, n, m, k)] =
Cr−1

(r − 1)!

∫ P1

Q1

xj [F (x)]γr−1f(x)gr−1
m (F (x))dx.

Integrating by parts treating [F (x)]γr−1f(x) for integration and rest of
the integrand for differentiation, we get

E[X∗j(r, n, m, k)]

= E[X∗j(r − 1, n,m, k)]− jCr−1

γr(r − 1)!

∫ P1

Q1

xj−1[F (x)]γrgr−1
m (F (x))dx

(2.4)
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the constant of integration vanishes since the integral considered in (2.3)
is a definite integral. On using (1.7), we obtain when m > −1 that

E[X∗j(r, n, m, k)] = E[X∗j(r − 1, n, m, k)]

− jCr−1

γr(r − 1)!

∫ P1

Q1

xj−1[F (x)]γr−1
{
−Q2 +

h2(x)f(x)
ah′(x)

}
gr−1
m (F (x))dx

which can be written as

E[X∗j(r, n, m, k)]− E[X∗j(r − 1, n, m, k)]

=
jQ2Cr−1

γr(r − 1)!

∫ P1

Q1

xj−1[F (x)]γr−1gr−1
m (F (x))dx

− jCr−1

aγr(r − 1)!

∫ P1

Q1

xj−1h2(x)
h′(x)

[F (x)]γr−1f(x)gr−1
m (F (x))dx

=
jQCr−1

aγr(r − 1)!

∫ P1

Q1

xj−1h2(x)ea/h(x)

h′(x)
[F (x)]γr−1f(x)gr−1

m (F (x))dx

− jCr−1

aγr(r − 1)!

∫ P1

Q1

xj−1h2(x)
h′(x)

[F (x)]γr−1f(x)gr−1
m (F (x))dx

and hence the result given in (2.1).
When m = −1,

E[X∗j(r, n,−1, k)]− E[X∗j(r − 1, n,−1, k)]

= − jkr−1

(r − 1)!

∫ P1

Q1

xj−1[F (x)]k−1
{
−Q2 +

h2(x)f(x)
ah′(x)

}
gr−1
−1 (F (x))dx

=
jQ2k

r−1

(r − 1)!

∫ P1

Q1

xj−1[F (x)]k−1gr−1
−1 (F (x))dx

− jkr−1

a(r − 1)!

∫ P1

Q1

xj−1h2(x)
h′(x)

[F (x)]k−1f(x)gr−1
−1 (F (x))dx

rewriting the above equation we get the result given in (2.2).

Special cases

i) Putting m = 0, k = 1 in (2.1), we can get the recurrence relations
for single moment of order statistics as
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E(Xj
n−r+1:n) = E(Xj

n−r+2:n)

+
j

a(n− r + 1)

{
QE

(
φ(Xn−r+1:n)ea/h(xn−r+1:n)

)
−E(φ(Xn−r+1:n))

}
.

(2.5)

That is

E(Xj
r:n) =E(Xj

r−1:n)

− j

a(r − 1)

{
QE

(
φ(Xr−1:n)ea/h(xr−1:n)

)
−E(φ(Xr−1:n))

}
.

ii) Setting k = 1 in (2.2) relations for lower records can be obtained as
(2.6)

E(Xj
L(r)) = E(Xj

L(r−1))−
j

a

{
QE

(
φ(XL(r))e

a/h(xL(r))
)
−E(φ(XL(r)))

}
.

Remark 2.2. At Q = 0 and P = 1, (non-truncated case) relations
(2.1) and (2.2) reduce, respectively, to

E[X∗j(r, n, m, k)]−E[X∗j(r − 1, n,m, k)] = − j

aγr
E[φ(X∗(r, n, m, k))]

and

E[X∗j(r, n,−1, k)]−E[X∗j(r−1, n,−1, k)] = − j

ak
E[φ(X∗(r, n,−1, k))].

The order statistics and lower record values cases are given from (2.5)
and (2.6) as

E(Xj
n−r+1:n) = E(Xj

n−r+2:n)− j

a(n− r + 1)
E(φ(Xn−r+1:n)).

That is

E(Xj
r:n) = E(Xj

r−1:n)] +
j

a(r − 1)
E(φ(Xr−1:n))

and

E(Xj
L(r)) = E(Xj

L(r−1))−
j

a
E(φ(XL(r))).

Similarly several recurrence relations based on Theorem 2.1 can be es-
tablished with proper choice of a and h(x).
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Table 1. Examples Based on Theorem 2.1

Distribution F (x) a h(x)

Inverse Weibull e−(θ/x)p
θp xp

0 < x < ∞
Exponentiated Weibull [1− e−(λx)p

]τ 1 [−ln{1− e−(λx)p}τ ]−1

0 < x < ∞
Power function (x/λ)p 1 [−ln(x/λ)p]−1

0 < x < λ

Exponentiated Pareto [1− (1 + x)−λ]θ 1 [−ln{1− (1 + x)−λ}θ]−1

0 < x < ∞
Exponentiated gamma [1− e−x(x + 1)]θ 1 [−ln{1− e−x(x + 1)}θ]−1

0 < x < ∞
Generalized exponential [1− e−λx]θ 1 [−ln(1− e−λx)θ]−1

0 < x < ∞
Exponentiated log-logistic

[
(x/σ)β

1+(x/σ)β

]θ
1

[
− ln

(
(x/σ)β

1+(x/σ)β

)θ]−1

0 < x < ∞
Generalized inverse Weibull e−θ(α/x)β

θ (α/x)−β

0 < x < ∞
Extended type I generalized logistic

(
λ

λ+e−x

)p
1

[
− ln

(
λ

λ+e−x

)p]−1

−∞ < x < ∞
Logistic [1 + e−x]−1 1 [ln(1 + e−x)]−1

−∞ < x < ∞
Gumbel e−e−x

1 ex

−∞ < x < ∞

3. Characterization

Theorem 3.1. Let X be a non-negative random variable having an
absolutely continuous distribution function F (x) with F (0) = 0 and
0 < F (x) < 1 for all x > 0, m > −1 then

E[X∗j(r, n, m, k)]−E[X∗j(r − 1, n, m, k)]

=
j

aγr

{
QE[φ(X∗(r, n, m, k))ea/h(X∗(r,n,m,k))]− E[φ(X∗(r, n, m, k))]

}

(3.1)

if and only if

F (x) = −Q2 +
h2(x)
ah′(x)

f(x), P1 ≤ x ≤ Q1.

Proof. The necessary part follows immediately from equation (2.1).
On the other hand if the recurrence relation in equation (3.1) is satisfied,
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then on using equations (1.2) and (2.4), we have

Cr−1

(r − 1)!

∫ P1

Q1

xj [F (x)]γr−1f(x)gr−1
m (F (x))dx

=
(r − 1)Cr−1

γr(r − 1)!

∫ P1

Q1

xj [F (x)]γr+mf(x)gr−2
m (F (x))dx

+
jQCr−1

aγr(r − 1)!

∫ P1

Q1

xj−1h2(x)ea/h(x)

h′(x)
[F (x)]γr−1f(x)gr−1

m (F (x))dx

− jCr−1

aγr(r − 1)!

∫ P1

Q1

xj−1h2(x)
h′(x)

[F (x)]γr−1f(x)gr−1
m (F (x))dx.

(3.2)

Integrating the first integral on the right hand side of equation (3.2), by
parts, we get

Cr−1

(r − 1)!

∫ P1

Q1

xj [F (x)]γr−1f(x)gr−1
m (F (x))dx

=
jCr−1

γr(r − 1)!

∫ P1

Q1

xj−1[F (x)]γrgr−1
m (F (x))dx

+
Cr−1

(r − 1)!

∫ P1

Q1

xj [F (x)]γr−1f(x)gr−1
m (F (x))dx

+
jQCr−1

aγr(r − 1)!

∫ P1

Q1

xj−1h2(x)ea/h(x)

h′(x)
[F (x)]γr−1f(x)gr−1

m (F (x))dx

− jCr−1

aγr(r − 1)!

∫ P1

Q1

xj−1h2(x)
h′(x)

[F (x)]γr−1f(x)gr−1
m (F (x))dx

which reduces to

jCr−1

γr(r − 1)!

∫ P1

Q1

xj−1[F (x)]γr−1gr−1
m (F (x))

{
F (x) + Q2 − h2(x)

ah′(x)
f(x)

}
dx

= 0.

(3.3)

Now applying a generalization of the Müntz-Szász Theorem (Hwang and
Lin, [10]) to equation (3.3), we get

F (x) = −Q2 +
h2(x)
ah′(x)

f(x), P1 ≤ x ≤ Q1

which proves that f(x) has the form as in equation (1.7).
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Now we shall use recurrence relation in (2.1), Q = 0, to characterize the
non-truncated general class of distribution by the following theorem.

Theorem 3.2. Let X be a non-negative random variable having an
absolutely continuous distribution function F (x) with F (0) = 0 and
0 < F (x) < 1 for all x > 0, then
(3.4)

E[X∗j(r, n,m, k)] = E[X∗j(r − 1, n, m, k)]− j

aγr
E[φ(X∗(r, n, m, k))]

if and only if

F1(x) = e−a/h(x), x ∈ (α, β).

Proof. The necessary part follows immediately from equation (2.1).
On the other hand if the recurrence relation in equation (3.4) is satisfied,
then on using equations (1.2), we have

Cr−1

(r − 1)!

∫ β

α
xj [F1(x)]γr−1f1(x)gr−1

m (F1(x))dx

=
(r − 1)Cr−1

γr(r − 1)!

∫ β

α
xj [F1(x)]γr+mf1(x)gr−2

m (F1(x))dx

− jCr−1

aγr(r − 1)!

∫ β

α

xj−1h2(x)
h′(x)

[F1(x)]γr−1f1(x)gr−1
m (F1(x))dx.

(3.5)

Integrating the first integral on the right hand side of equation (3.5), by
parts, we get

Cr−1

(r − 1)!

∫ β

α
xj [F1(x)]γr−1f1(x)gr−1

m (F1(x))dx

=
jCr−1

γr(r − 1)!

∫ β

α
xj−1[F1(x)]γrgr−1

m (F1(x))dx

+
Cr−1

(r − 1)!

∫ β

α
xj [F1(x)]γr−1f1(x)gr−1

m (F1(x))dx

− jCr−1

aγr(r − 1)!

∫ β

α

xj−1h2(x)
h′(x)

[F1(x)]γr−1f1(x)gr−1
m (F1(x))dx

which reduces to
(3.6)

jCr−1

γr(r − 1)!

∫ β

α
xj−1[F1(x)]γr−1gr−1

m (F1(x))
{

F1(x)− h2(x)
ah′(x)

f1(x)
}

dx = 0.
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Now applying a generalization of the Müntz-Szász Theorem (Hwang and
Lin, [10]) to equation (3.3), we get

f1(x)
F1(x)

=
ah′(x)
h2(x)

which proves that

F1(x) = e−a/h(x), x ∈ (α, β).

4. Conclusion

This paper deals with the lower generalized order statistics within a
class of doubly truncated distributions. Some recurrence relations for
single moments are derived. Two theorems for characterizing the general
form of distribution based on single moments of lower generalized order
statistics are given. Special cases are also deduced.
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