• Title/Summary/Keyword: low-temperature oxide

Search Result 1,089, Processing Time 0.024 seconds

Electronic, Optical and Electrical Properties of Nickel Oxide Thin Films Grown by RF Magnetron Sputtering

  • Park, Chanae;Kim, Juhwan;Lee, Kangil;Oh, Suhk Kun;Kang, Hee Jae;Park, Nam Seok
    • Applied Science and Convergence Technology
    • /
    • v.24 no.3
    • /
    • pp.72-76
    • /
    • 2015
  • Nickel oxide (NiO) thin films were grown on soda-lime glass substrates by RF magnetron sputtering method at room temperature (RT), and they were post-annealed at the temperatures of $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$ and $400^{\circ}C$ for 30 minutes in vacuum. The electronic structure, optical and electrical properties of NiO thin films were investigated using X-ray photoelectron spectroscopy (XPS), reflection electron energy spectroscopy (REELS), UV-spectrometer and Hall Effect measurements, respectively. XPS results showed that the NiO thin films grown at RT and post annealed at temperatures below $300^{\circ}C$ had the NiO phase, but, at $400^{\circ}C$, the nickel metal phase became dominant. The band gaps of NiO thin films post annealed at temperatures below $300^{\circ}C$ were about 3.7 eV, but that at $400^{\circ}C$ should not be measured clearly because of the dominance of Ni metal phase. The NiO thin films post-annealed at temperatures below $300^{\circ}C$ showed p-type conductivity with low electrical resistivity and high optical transmittance of 80% in the visible light region, but that post-annealed at $400^{\circ}C$ showed n-type semiconductor properties, and the average transmittance in the visible light region was less than 42%. Our results demonstrate that the post-annealing plays a crucial role in enhancing the electrical and optical properties of NiO thin films.

Effect of Cr content on the FAC of pipe material at 150℃ (150℃에서 원전 2차측 배관재료의 Cr함량에 따른 유체가속부식 특성)

  • Park, Tae Jun;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.274-279
    • /
    • 2013
  • Flow accelerated corrosion (FAC) of the carbon steel piping in nuclear power plants (NPPs) has been major issue in nuclear industry. During the FAC, a protective oxide layer on carbon steel dissolves into flowing water leading to a thinning of the oxide layer and accelerating corrosion of base material. As a result, severe failures may occur in the piping and equipment of NPPs. Effect of alloying elements on FAC of pipe materials was studied with rotating cylinder FAC test facility at $150^{\circ}C$ and at flow velocity of 4m/s. The facility is equipped with on line monitoring of pH, conductivity, dissolved oxygen(DO) and temperature. Test solution was the demineralized water, and DO concentration was less than 1 ppb. Surface appearance of A 106 Gr. B which is used widely in secondary pipe in NPPs showed orange peel appearance, typical appearance of FAC. The materials with Cr content higher than 0.17wt.% showed pit. The pit is thought to early degradation mode of FAC. The corrosion product within the pit was enriched with Cr, Mo, Cu, Ni and S. But S was not detected in SA336 F22V with 2.25wt.% Cr. The enrichment of Cr and Mo seemed to be related with low, solubility of Cr and Mo compared to Fe. Measured FAC rate was compared with Ducreaux's relationship and showed slightly lower FAC rate than Ducreaux's relationship.

A Study on the N2O Separation Process from Crude N2O (Crude N2O로부터 정제된 N2O 분리공정에 관한 연구)

  • Cho, Jungho;Lee, Taekhong;Park, Jongki
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.467-473
    • /
    • 2005
  • Liquid phase nitrous oxide ($N_2O$) contains air, carbon monoxide, water, carbon dioxide and NOx as main impurities. It is known to be very dangerous to obtain a very pure $N_2O$ product by using solidification at low temperature. In this study a new method to obtain a high purity of $N_2O$ product based on a continuous distillation process was introduced. For the modeling of the continuous distillation process to obtain a product having a purity over 99.999% of $N_2O$ stream, Intalox wire gauze packing- No. SCH-80S gauze packing column was used. Peng-Robinson equation of state was used for the modeling of the continuous distillation process and refrigeration system. Computational results performed in this work showed a good agreement with Aspen Plus simulation results.

Progress in Novel Oxides for Gate Dielectrics and Surface Passivation of GaN/AlGaN Heterostructure Field Effect Transistors

  • Abernathy, C.R.;Gila, B.P.;Onstine, A.H.;Pearton, S.J.;Kim, Ji-Hyun;Luo, B.;Mehandru, R.;Ren, F.;Gillespie, J.K.;Fitch, R.C.;Seweel, J.;Dettmer, R.;Via, G.D.;Crespo, A.;Jenkins, T.J.;Irokawa, Y.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.1
    • /
    • pp.13-20
    • /
    • 2003
  • Both MgO and $Sc_2O_3$ are shown to provide low interface state densities (in the $10^{11}{\;}eV^{-1}{\;}cm{\;}^{-2}$ range)on n-and p-GaN, making them useful for gate dielectrics for metal-oxide semiconductor(MOS) devices and also as surface passivation layers to mitigate current collapse in GaN/AlGaN high electron mobility transistors(HEMTs).Clear evidence of inversion has been demonstrated in gate-controlled MOS p-GaN diodes using both types of oxide. Charge pumping measurements on diodes undergoing a high temperature implant activation anneal show a total surface state density of $~3{\;}{\times}{\;}10^{12}{\;}cm^{-2}$. On HEMT structures, both oxides provide effective passivation of surface states and these devices show improved output power. The MgO/GaN structures are also found to be quite radiation-resistant, making them attractive for satellite and terrestrial communication systems requiring a high tolerance to high energy(40MeV) protons.

fabrication of Self-Aligned Mo2N/MO-Gate MOSFET and Its Characteristics (자기 정렬된 Mo2N/Mo 게이트 MOSFET의 제조 및 특성)

  • 김진섭;이종현
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.6
    • /
    • pp.34-41
    • /
    • 1984
  • MOEN/MO double layer which is to be used It)r the RMOS (refractory metal oxide semiconductor) gate material has been fabricated by means of low temperature reactive sputtering in N2 and Ar mixture. Good Mo2N film was obtained in the volumetric mixture of Ar:N2=95:5. The sheet resistance of the fabricated Mo7N film was about 1.20 - 1.28 ohms/square, which is about an order of magnitude lower than that of polysilicon film, and this would enable to improve the operational speed of devices fabricated with this material. When PSG (phosphorus silicate glass) was used as impurity diffusion source for the source and drain of the RMOSFET in the N2 atmosphere at about 110$0^{\circ}C$, the Mo2N was reduced to Mo resulting in much smaller sheet resistance of about 0.38 ohm/square. The threshold voltage of the RMOSFET fabricated in our experiment was - 1.5 V, and both depletion and enhancement mode RMOSFETs could be obtained.

  • PDF

The Effect of Hydrogen Added into In-let Air on Industrial Diesel Engine Performance (흡기중의 수소첨가가 산업용 디젤기관의 성능에 미치는 영향)

  • Park, Kweon-Ha;Lee, Jin-A;Lee, Wha-Soon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1050-1056
    • /
    • 2010
  • Diesel engines introduce only air into the cylinder, and the air is high lycompressed. Fuel is directly injected into the combustion chamber in high temperature and pressure. Therefore diesel engines have high thermal efficiency because of the high compression ratio, while having high level of particulate matter and nitrogen oxide emissions because of the direct fuel injection. Many technologies have been developed to reduce particulate matter and nitrogen oxide emissions from diesel engines. One of the technologies is hydrogen fuel introduced into the combustion chamber with diesel fuel. In this thesis tiny amount of hydrogen is supplied into the combustion chamber in order to enhance the combustion performance. The engine, in which hydrogen is introduced, is tested. There are 20 test conditions given as 5 torque values of 100%, 75%, 50%, 25%, 0%, and 4 engine speeds of 700rpm, 1000rpm, 1500rpm and 2000rpm for the two cases with or without hydrogen addition. Maximum torques and Idle torques at each engine speed are measured, then the torque values are divided into 4 levels with 25% increasing step. The result shows that the fuel consumption, smoke, CO are reduced while the NOx emission is slightly increased, and the hydrogen addition has not a great effect on the performance at low loads but a great effect at a maximum load.

Phase Formation and Thermo-physical Properties of Lanthanum/Gadolinium Zirconate with Reduced Rare-earth Contents for Thermal Barrier Coatings (열차폐코팅을 위한 희토류가 저감된 란타눔/가돌리늄 지르코네이트의 상형성 및 열물성)

  • Lee, Sujin;Kwon, Chang-Sup;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Nahm, Sahn;Kim, Seongwon
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.420-425
    • /
    • 2015
  • Rare-earth zirconates, such as lanthanum zirconates and gadolinium zirconates, have been intensively investigated due to their excellent properties of low thermal conductivity as well as chemical stability at high temperature, which can make these materials ones of the most promising candidates for next-generation thermal barrier coating applications. In this study, three compositions, lanthanum/gadolinium zirconates with reduced rare-earth contents from stoichiometric $RE_2Zr_2O_7$ compositions, are fabricated via solid state reaction as well as sintering at $1600^{\circ}C$ for 4 hrs. The phase formation, microstructure, and thermo-physical properties of three oxide ceramics are examined. In particular, each oxide ceramics exhibits composite structures between pyrochlore and fluorite phases. The potential of lanthanum/gadolinium zirconate ceramics for TBC applications is also discussed.

Improved Contact property in low temperature process via Ultrathin Al2O3 layer (Al2O3 층을 이용한 저온공정에서의 산화물 기반 트랜지스터 컨택 특성 향상)

  • Jeong, Seong-Hyeon;Sin, Dae-Yeong;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.55-55
    • /
    • 2018
  • Recently, amorphous oxides such as InGaZnO (IGZO) and InZnO (IZO) as a channel layer of an oxide TFT have been attracted by advantages such as high mobility, good uniformity, and high transparency. In order to apply such an amorphous oxide TFTs to a display, the stability in various environments must be ensured. In the InGaZnO which has been studied in the past, Ga elements act as a suppressor of oxygen vacancy and result in a decreased mobility at the same time. Previous studies have been showed that the InZnO, which does not contain Ga, can achieve high mobility, but has relatively poor stability under various instability environments. In this study, the TFTs using $IZO/Al_2O_3$ double layer structure were studied. The introduction of an $Al_2O_3$ interlayer between source/drain and channel causes superior electrical characteristics and electrical stability as well as reduced contact resistance with optimally perfect ohmic contact. For the IZO and $Al_2O_3$ bilayer structures, the IZO 30nm IZO channels were prepared at $Ar:O_2=30:1$ by sputtering and the $Al_2O_3$ interlayer were depostied with various thickness by ALD at $150^{\circ}C$. The optimal sample exhibits considerably good TFT performance with $V_{th}$ of -3.3V and field effect mobility of $19.25cm^2/Vs$, and reduced $V_{th}$ shift under positive bias stress stability, compared to conventional IZO TFT. The enhanced TFT performances are closely related to the nice ohmic contact properties coming from the defect passivation of the IZO surface inducing charge traps, and we will provide the detail mechanism and model via electrical analysis and transmission line method.

  • PDF

Effect of an Au Nanodot Nucleation Layer on CO Gas Sensing Properties of Nanostructured SnO2 Thin Films

  • Hung, Nguyen Le;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.24 no.3
    • /
    • pp.152-158
    • /
    • 2014
  • We report the effect of the fabric of the surface microstructure on the CO gas sensing properties of $SnO_2$ thin films deposited on self-assembled Au nanodots ($SnO_2$/Au) that were formed on $SiO_2/Si$ substrates. We characterized structural and morphological properties, comparing them to those of $SnO_2$ thin films deposited directly onto $SiO_2/Si$ substrates. We observed a significant enhancement of CO gas sensing properties in the $SnO_2$/Au gas sensors, specifically exhibiting a high maximum response at $200^{\circ}C$ and quite a low detection limit of 1 ppm level in dry air. In particular, the response of the $SnO_2/Au$ gas sensor was found to reach the maximum value of 32.5 at $200^{\circ}C$, which is roughly 27 times higher than the response (~1.2) of the $SnO_2$ gas sensor obtained at the same operating temperature of $200^{\circ}C$. Furthermore, the $SnO_2/Au$ gas sensors displayed very fast response and recovery behaviors. The observed enhancement in the CO gas sensing properties of the $SnO_2/Au$ sensors is mainly ascribed to the formation of a nanostructured morphology in the active $SnO_2$ layer having a high specific surface-reaction area by the insertion of a nanodot form of Au nucleation layer.

Coplanar Waveguides Fabricated on Oxidized Porous Silicon Air-Bridge for MMIC Application (다공질 실리콘 산화막 Air-Bridge 기판 위에 제작된 MMIC용 공면 전송선)

  • 박정용;이종현
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.5
    • /
    • pp.285-289
    • /
    • 2003
  • This paper proposes a 10 ${\mu}{\textrm}{m}$ thick oxide air-bridge structure which can be used as a substrate for RF circuits. The structure was fabricated by anodic reaction, complex oxidation and rnicrornachining technology using TMAH etching. High quality films were obtained by combining low temperature thermal oxidation (50$0^{\circ}C$, 1 hr at $H_2O$/O$_2$) and rapid thermal oxidation (RTO) process (105$0^{\circ}C$, 2 min). This structure is mechanically stable because of thick oxide layer up to 10 ${\mu}{\textrm}{m}$ and is expected to solve the problem of high dielectric loss of silicon substrate in RF region. The properties of the transmission line formed on the oxidized porous silicon (OPS) air-bridge were investigated and compared with those of the transmission line formed on the OPS layers. The insertion loss of coplanar waveguide (CPW) on OPS air-bridge was (about 1 dB) lower than that of CPW on OPS layers. Also, the return loss of CPW on OPS air-bridge was less than about - 20 dB at measured frequency region for 2.2 mm. Therefore, this technology is very promising for extending the use of CMOS circuitry to higher RF frequencies.