A Study on the N2O Separation Process from Crude N2O

Crude N2O로부터 정제된 N2O 분리공정에 관한 연구

  • Cho, Jungho (Department of Chemical Engineering, DongYang University) ;
  • Lee, Taekhong (Department of Chemical Engineering, Hoseo University) ;
  • Park, Jongki (Korea Institute of Energy Research)
  • Received : 2005.04.18
  • Accepted : 2005.05.13
  • Published : 2005.08.31

Abstract

Liquid phase nitrous oxide ($N_2O$) contains air, carbon monoxide, water, carbon dioxide and NOx as main impurities. It is known to be very dangerous to obtain a very pure $N_2O$ product by using solidification at low temperature. In this study a new method to obtain a high purity of $N_2O$ product based on a continuous distillation process was introduced. For the modeling of the continuous distillation process to obtain a product having a purity over 99.999% of $N_2O$ stream, Intalox wire gauze packing- No. SCH-80S gauze packing column was used. Peng-Robinson equation of state was used for the modeling of the continuous distillation process and refrigeration system. Computational results performed in this work showed a good agreement with Aspen Plus simulation results.

액상의 아산화질소($N_2O$) 혼합물은 주요 불순물로써 공기, 일산화탄소, 수분, 이산화탄소와 NOx 성분을 포함하고 있다. 저온에서 고체화하여 고 순도의 $N_2O$를 얻어내는 것은 위험하다고 알려져 있다. 본 연구에서는 연속식 증류공정에 기초하여 고 순도의 $N_2O$ 제품을 얻어내는 새로운 방법을 소개하였다. 99.999% 이상의 고 순도의 $N_2O$ 제품을 얻어낼 수 있는 연속식 증류공정을 모델화하기 위하여 intalox wire guaze 타입의 SCH-80S의 충진탑을 사용하였다. Peng-Robinson 상태방정식을 사용하여 연속식 증류탑과 냉동 사이클을 모사하였다. 본 연구에서 수행한 전산모사 결과는 상용성 화학공정모사기인 Aspen Plus로 모사한 결과와 매우 잘 일치함을 알 수 있었다.

Keywords

References

  1. Wrights, A. J., 'History of Anesthesia Early Use of Nitrous Oxide,' Educational Synopses in Anesthesia and Critical Medical Care, 3(6), 10-11(1996)
  2. http://www.absoluteastronomy.com/encyclopedia/n/ni/nitrous_oxide. Htm
  3. O'Sullivan, I. and Benger, J., 'Nitrous Oxide in Emergency Medicine,' Emerg. Med J., 20(1), 214-217(2003) https://doi.org/10.1136/emj.20.3.214
  4. Peng, D. Y. and Robinson, D. B., 'A New Two-constants Equation of State for Fluids and Fluid Mixtures,' Ind. Chem. Fundam., 15(1), 59-64(1976) https://doi.org/10.1021/i160057a011
  5. Twu, C. H., Bluck, D., Cunningham, J. R. and Coon, J. E., 'A Cubic Equation of State with a New Alpha Function and New Mixing Rule,' Fluid Phase Equil., 69(10), 33-50(1991) https://doi.org/10.1016/0378-3812(91)90024-2
  6. Twu, C. H., Coon, J. E. and Cunningham, J. R., 'A New Cubic Equation of State,' Fluid Phase Equil., 75(14), 65-79(1992) https://doi.org/10.1016/0378-3812(92)87007-A
  7. Daubert, T. E., Technical Data Book - Petroleum Refining, 6th ed., American Petoleum Institute(1997)
  8. Jenson, V. G. and Jeffreys, G. V., Mathematical Methods in Chemical Engineering, 2nd ed., United Publishing & Promotion Co., Ltd(1977)
  9. Holland, C. D., Fundamentals of Multicomponent Distillation, 1st ed., McGraw-Hill Book Company(1981)
  10. Yong, P. S., Moon, H. M. and Yi, S. C., 'Exergy Analysis of Cryogenic Air Separation Process for Cenerating Nitrogen,' Journal of Industrial and Engineering Chemistry, 8(6), 499-505 (2002)
  11. Lee, J. Y., Yeo, Y. K., Moon, H. M. and Park, D. S., 'Modeling and Simulation of Sulfur Hexafluoride $(SF_{6})$ Purification Process,' Korean J. Chem. Eng., 17(2), 252-256(2000) https://doi.org/10.1007/BF02707153
  12. Prausnitz, J. M., Lichitenthaler, R. N. and Azevedo, E. G., Molecular Thermodynamics of Fluid Phase Equilibria, 3rd ed., Prentice- Hall Inc.(1998)
  13. Walas, S. M., Phase Equilibria in Chemical Engineering, 1st ed., Butterworth Publishers.(1985)