• Title/Summary/Keyword: low-speed bearing

Search Result 130, Processing Time 0.029 seconds

Evaluation of The Wear Characteristics on The White Metal Bearing in a Low Speed Two-Stroke Marine Diesel Engine (저속 2행정 박용 기관에서의 LO 입자 오염도에 따른 베어링 마모 특성 평가)

  • Ahn, Y.H.;Kim, D.Y.;Kim, Y.C.;Park, D.J.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.21-22
    • /
    • 2005
  • A study on the wear characteristics of the white metal(Sn-base alloy) bearing as a function of particle contamination level was conducted in order to establish control criteria of the lubricant in the 2-stroke marine diesel engine. Particle contamination level of the lubricants ranged from NAS 10 to 12 for the experiments. Bar-on-plate type wear test was performed using reciprocating wear tester. Based on this study it was found that there was no noticeable difference in weight loss of the white metal for NAS10 and NAS11(particle contamination level). Surface roughness of the white metal bearing after the wear test of 8hrs for the highly contaminated lubricant(NAS12 level) was up to $6{\mu}m$ in Rmax whilst that of the less contaminated lubricants(NAS10 & 11) was less than $1.5{\mu}m$ in Rmax.

  • PDF

Analysis on the Static Performance of Vacuum-Preloaded Porous Air Bearings (진공예압형 다공질 공기베어링의 압력분포 및 성능해석)

  • Khim, Gyungho;Park, Chun Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1327-1333
    • /
    • 2013
  • Air bearings are widely used in precision stages because of low friction and high motion accuracy, however, they suffer from low stiffness in comparison with rolling bearings or hydrostatic bearings. So, several preloading methods using weight, magnet and vacuum force, and opposing pads have been used to increase the stiffness of the air bearings. In this paper, pressure distributions of the vacuum preloaded porous air bearings are calculated using the proposed method. And then, the load capacity and stiffness are analyzed. For the vacuum preloaded air bearings, the stiffness is increased owing to reduced bearing clearance by vacuum force. The simulation results indicate that variation of vacuum pressure with clearance in the vacuum pocket gives rise to low stiffness, so the vacuum pocket should be designed for pressure to be constantly maintained regardless of the bearing clearance by means of large effective pumping speed.

Characteristics of the Shaft Vibration in a High Head Pump-Turbine (고낙차 펌프-터빈에서의 축계 진동 특성)

  • Ha, Hyun-Cheon;Choi, Seong-Pil
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.2 s.3
    • /
    • pp.27-31
    • /
    • 1999
  • This paper describes the shaft vibration phenomena measured on a pump-turbine of a pumped storage power plant. The pump-turbine runs at a rotational speed of 450 rpm (7.5 Hz). The power output (load) of the pump-turbine is varied from 100 to 300 MW in the generating mode. The magnitude of the shaft vibration highly depends on the power load. The vibration magnitude of the shaft is very high in the middle load zone from 170 to 210 MW, elsewhere the vibration is low. From nitration spectra, it is shown that the frequency of major nitration in that load zone is 2.5 Hz which is approximately $34\%$ of the shaft rotating speed in Hz. This frequency component does not occur below and above that load zone. This subsynchronous vibration is caused by the flow induced disturbance due to spiral vortex flow downstream of the pump-turbine runner. Furthermore, the shaft vibration is highly decreased due to an increased bearing preload.

  • PDF

Characteristics of the Shaft Vibration in a High Head Pump-Turbine (고낙차 펌프-터빈에서의 축계 진동 특성)

  • Ha, Hyun Cheon;Choi, Seong Pil
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.166-172
    • /
    • 1998
  • This paper describes the shaft vibration phenomena measured on a pump-turbine ofa pumped storage power plant. The pump-turbine runs at a rotational speed of 450 rpm (7.5 Hz). The power output (load) of the pump-turbine was varied from 100 to 300 MW in the generating mode. It was found that the magnitude of the shaft vibration was highly dependent upon the power load. The vibration magnitude of the shaft vibration is very high in the middle load zone from 170 to 210 MW, elsewhere the vibration low. From vibration spectra, it was found that the frequency of major vibration in that load zone was 2.5 Hz which is approximately $34\%$ of the shaft rotating speed in Hz. This frequency component disappeared below and above that load zone. This subsynchronous vibration is caused by the flow induced disturbance due to spiral vortex flow downstream of the pump-turbine runner. Furthermore, it was found that shaft vibration was highly decreased due to the increase of bearing preload.

  • PDF

Study on the Air-bearing Stage Driven by Linear Induction Motors (선형 유도기 구동 방식 공기 베어링 스테이지에 관한 연구)

  • Jung, Kwang-Suk;Shim, Ki-Bon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.39-46
    • /
    • 2010
  • Linear induction motor is adopted as an actuator of the planar stage. An inherently poor characteristic at zero or ultra-low speed zone of the induction motor is remarkably improved due to a recent development of power electronic semiconductor technology and a spatial vector control theory. At present, a servo response speed of the induction motor reaches 90 percent of one of PM synchronous or BLDC motor. Specially, as a secondary of the induction motor can be constructed using uniform conducting sheets, there is no periodic force ripple as in PM motors. So, the induction motor can be superior to another driving means under a certain condition. This paper discusses the overall development procedure of non-contact planar stage with a big workspace using linear induction motors.

Influence of the deteriorated anti-seismic devices on seismic performance and device behavior of continuous girder bridges

  • Shangtao Hu;Renkang Hu;Menggang Yang;Dongliang Meng
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.333-343
    • /
    • 2023
  • Various seismic isolation and reduction devices have been applied to suppress the longitudinal vibration of continuous girder bridges. As representative devices, lead rubber bearing (LRB) and fluid viscous damper (FVD) might suffer from deterioration during the long-term service. This study aims to evaluate the impact of device deterioration on the seismic responses of continuous girder bridges and investigate the seismic behavior of deteriorated LRBs and FVDs. Seismic performance of a simplified bridge model was investigated, and the influence of device deterioration was evaluated by the coefficient of variation method. The contribution of LRB and FVD was assessed by the Sobol global sensitivity analysis method. Finally, the seismic behaviors of deteriorated LRBs and FVDs were discussed. The result shows that (i) the girder-pier relative displacement is the most sensitive to the changes in the deterioration level, (ii) the deterioration of FVD has a greater effect on the structural responses than that of LRB, (iii) FVD plays a major role in energy dissipation with a low degradation level while LRB is more essential in dissipating energy when suffering from high degradation level, (iv) the deteriorated devices are more likely to reach the ultimate state and thus be damaged.

Study on transient performance of tilting-pad thrust bearings in nuclear pump considering fluid-structure interaction

  • Qiang Li;Bin Li;Xiuwei Li;Quntao Xie;Qinglei Liu;Weiwei Xu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2325-2334
    • /
    • 2023
  • To study the lubrication performance of tilting-pad thrust bearing (TPTBs) during start-up in nuclear pump, a hydrodynamic lubrication model of TPTBs was established based on the computational fluid dynamics (CFD) method and the fluid-structure interaction (FSI) technique. Further, a mesh motion algorithm for the transient calculation of thrust bearings was developed based on the user defined function (UDF). The result demonstrated that minimum film thickness increases first and then decreases with the rotational speed under start-up condition. The influence of pad tilt on minimum film thickness is greater than that of collar movement at low speed, and the establishment of dynamic pressure mainly depends on pad tilt and minimum film thickness increases. As the increase of rotational speed, the influence of pad tilt was abated, where the influence of the moving of the collar dominated gradually, and minimum film thickness decreases. For TPTBs, the circumferential angle of the pad is always greater than the radial angle. When the rotational speed is constant, the change rate of radial angle is greater than that of circumferential angle with the increase of loading forces. This study can provide reference for improving bearing wear resistance.

Low Speed Rolling Bearing Fault Detection Using AE Signal Analyzed By Envelop Analysis Added DWT (웨이블릿변환이 접목된 포락처리를 이용한 저속 회전하는 구름요소베어링 결함 진단)

  • Kim, Byeong-Su;Kim, Won-Cheol;Gu, Dong-Sik;Kim, Jae-Gu;Choi, Byeong-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.672-678
    • /
    • 2009
  • Acoustic Emission (AE) technique is a non-destructive testing method and widely used for the early detection of faults in rotating machines in these days, because the sensitivity of AE transducers is higher than normal accelerometers. So it can detect low energy vibration signals. The faults in the rotating machines are generally occurred at bearings and gearboxes which are the principal parts of the machines. It was studied to detect the bearing faults by envelop analysis in several decade years. And the researches showed that AE had a possibility of the application in condition monitoring system(CMS) using the envelope analysis for the rolling bearing. And peak ratio (PR) was developed for expression of the bearing condition in condition monitoring system using AE. Noise level is needed to reduce to take exact PR value because the PR is calculated from total root mean square (RMS) and the harmonics peak levels of the defect frequencies of the bearing. Therefore, in this paper, the discrete wavelet transform (DWT) was added in the envelope analysis to reduce the noise level in the AE signals. And then, the PR was calculated and compared with general envelope analysis result and the result of envelope analysis added the DWT. In the experiment result about inner fault of bearing, defect frequency was difficult to find about only envelop analysis. But it's easy to find defect frequency after wavelet transform. Therefore, Envelop analysis added wavelet transform was useful method for early detection of default in signal process.

A Design Fitness Analysis of Journal Bearings for LPLi Fuel Pump Application (LPLi 연료펌프 적용을 위한 저어널 베어링의 설계 적합성 해석)

  • Lee, An-Sung;Kim, Chang-Up
    • Tribology and Lubricants
    • /
    • v.25 no.5
    • /
    • pp.324-329
    • /
    • 2009
  • In this study a complex design fitness analysis of journal bearings is carried out for the LPLi rotary-vane fuel pump application, as an external and horizontal installation, in LPG vehicles. Bearings considered in the analyses are plain and 3-axial groove journal bearings. Upon reflecting the fact that the primary failure mode of bearings in the application is a premature friction and wear failure of bearing metal due to a very low viscosity of liquid fuel LPG as a bearing lubricant, the performance factors of bearings used in an evaluation process of design fitness are a load carrying capacity and vibration suppression ability relative to a rated speed. At this time the design variables of bearings are a radial clearance and length. Results show that, in terms of both of the load carrying capacity and vibration suppression ability, the plain journal bearings are superior to the 3-axial groove journal bearings and among the plain bearings the smaller the bearing clearance (5>10>$15\;{\mu}m$) is and the longer the bearing length (6<8<10<12<14 mm) is, the better the bearing performance is.

Digital Linear Control System for a Magnetic Bearing System of a High Vacuum Turbomolecular Pump (고진공 터보 분자펌프용 자기베어링 시스템의 디지털 선형 제어시스템)

  • Ro, Seung-Kook;Kyung, Jin-Ho;Park, Jong-Kweon;Nam, Woo-Ho;Koh, Deug-Yong
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.256-264
    • /
    • 2010
  • In this paper, a digital controller of magnetic bearing system for a high vacuum turbomolecular pump (TMP) is designed and examined. For stabilizing and providing damping in magnetic bearing, the digital PID controller is applied for each 5 control axes, and the inter-axis cross feedback controller is also applied to suppress low frequency vibration caused by gyroscopic moment of the rotor at high speed of rotation. The fabricated rotor-shaft has its first flexible natural frequency lower than maximum speed, about 614Hz, so the two lead filters are applied to increase damping of flexible mode. Notch filters with rotating frequency were selected to reduce vibration of the pump housing caused by unbalance load. The implemented controllers are verified by examination of frequency response and rotating test up to 40,000 rpm, which is higher than critical speed of backward flexible mode.