DOI QR코드

DOI QR Code

Study on transient performance of tilting-pad thrust bearings in nuclear pump considering fluid-structure interaction

  • Qiang Li (College of New Energy, China University of Petroleum (East China)) ;
  • Bin Li (College of New Energy, China University of Petroleum (East China)) ;
  • Xiuwei Li (College of New Energy, China University of Petroleum (East China)) ;
  • Quntao Xie (College of New Energy, China University of Petroleum (East China)) ;
  • Qinglei Liu (College of New Energy, China University of Petroleum (East China)) ;
  • Weiwei Xu (College of New Energy, China University of Petroleum (East China))
  • Received : 2022.08.04
  • Accepted : 2023.03.05
  • Published : 2023.06.25

Abstract

To study the lubrication performance of tilting-pad thrust bearing (TPTBs) during start-up in nuclear pump, a hydrodynamic lubrication model of TPTBs was established based on the computational fluid dynamics (CFD) method and the fluid-structure interaction (FSI) technique. Further, a mesh motion algorithm for the transient calculation of thrust bearings was developed based on the user defined function (UDF). The result demonstrated that minimum film thickness increases first and then decreases with the rotational speed under start-up condition. The influence of pad tilt on minimum film thickness is greater than that of collar movement at low speed, and the establishment of dynamic pressure mainly depends on pad tilt and minimum film thickness increases. As the increase of rotational speed, the influence of pad tilt was abated, where the influence of the moving of the collar dominated gradually, and minimum film thickness decreases. For TPTBs, the circumferential angle of the pad is always greater than the radial angle. When the rotational speed is constant, the change rate of radial angle is greater than that of circumferential angle with the increase of loading forces. This study can provide reference for improving bearing wear resistance.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (NO. 52176050, NO. 51506225), the General Program of Natural Science Foundation of Shandong Province (NO. ZR2020ME174).

References

  1. R. Liu, L. Jing, X. Meng, B.G. Lyu, Mixed elastohydrodynamic analysis of a coupled journal-thrust bearing system in a rotary compressor under high ambient pressure[J], Tribol. Int. 159 (2021), 106943.
  2. T.F. Peixoto, K.L. Cavalca, Thrust bearing coupling effects on the lateral dynamics of turbochargers, Tribol. Int. 145 (2020), 106166.
  3. Y.M. Mo, Y. Gong, Z.G. Yang, Failure analysis on the O-ring of radial thrust bearing room of main pump in a nuclear power plant, Eng. Fail. Anal. 115 (2020), 104673.
  4. Y.A. Radin, I.A. Grishin, Axial thrust balancing in high-temperature cylinders of steam turbines during transients in combined-cycle units, Appl. Therm. Eng. 66 (2019) 409-414. https://doi.org/10.1134/S0040601519060077
  5. A.N. Guo, X.J. wang, J. Jin, D.Y. Hua, Z.K. Hua, Experimental test of static and dynamic characteristics of tilting-pad thrust bearings, Adv. Mech. Eng. 7 (2015), 1687814015593878.
  6. W. Ouyang, X.Y. Yuan, Q. Jia, Analysis of tilting-pad thrust bearing static instability and lubrication performance under the bistability, Ind. Lubric. Tribol. 66 (2014) 584e592.
  7. Q. Zhou, H.K. Li, L. Pei, Z.W. Zhong, Research on non-uniform pressure pulsation of the diffuser in a nuclear reactor coolant pump, Nucl. Eng. Technol. 53 (2021) 1020-1028. https://doi.org/10.1016/j.net.2020.08.007
  8. X.G. Guo, Y. Li, Z.J. Jin, R.K. Kang, Modeling and simulating of high chromium alloy based on molecular dynamics, J. Nanosci. Nanotechnol. 19 (2019) 4671-4676. https://doi.org/10.1166/jnn.2019.16358
  9. X. Jiang, J. Wang, J. Fang, Thermal elastohydrodynamic lubrication analysis of tilting pad thrust bearings, Proc. Inst. Mech. Eng. Part J.-J. Eng. Tribol. 225 (2011) 51-57. https://doi.org/10.1177/2041305X10394408
  10. R.L. Chen, X.Z. Wang, C. Du, J.L. Wang, J. Zha, K. Liu, Study on the influence of thrust plate tilt on performance of distributed hybrid thrust bearing with tilting pad, J. Braz. Soc. Mech. Sci. Eng. 43 (2021) 320.
  11. M.M. Galvao, G.J. Menon, V.A. Schwarz, Numerical study of the influence of the pivot position on the steady-state behavior of tilting-pad thrust bearings, J. Braz. Soc. Mech. Sci. Eng. 39 (2017) 3165-3180. https://doi.org/10.1007/s40430-017-0805-x
  12. H.J. Wang, R.Z. Gong, D.P. Lu, Z.D. Wu, F.C. Li, Numerical simulation of the flow in a large-scale thrust bearing, in: 3rd Joint US-European Fluids Engineering Division Summer Meeting, Canada, Montreal, Aug 1-5, 2010.
  13. L. Zhai, Y. Luo, X. Liu, F.A. Chen, Y.X. Xiao, Z.W. Wang, Numerical simulations for the fluid-thermal-structural interaction lubrication in a tilting pad thrust bearing, Eng. Comput. 34 (2017) 1149-1165. https://doi.org/10.1108/EC-08-2015-0209
  14. M. Wodtke, A. Olszewski, M. Wasilczuk, Application of the fluid-structure interaction technique for the analysis of hydrodynamic lubrication problems, Proc. Inst. Mech. Eng. Part J.-J. Eng. Tribol. 227 (2013) 888-897. https://doi.org/10.1177/1350650113481147
  15. M. Wodtke, A. Schubert, M. Fillon, M. Wasilczuk, P. Pajaczkowski, Large hydrodynamic thrust bearing: comparison of the calculations and measurements, proceedings of the institution of mechanical engineers, Proc. Inst. Mech. Eng. Part J.- J. Eng. Tribol. 228 (2014) 974-983. https://doi.org/10.1177/1350650114528317
  16. L.M. Zhai, Y.Y. Luo, Z.W. Wei, X. Liu, Y.X. Xiao, A review on the large tilting pad thrust bearings in the hydropower units, Renew. Sustain. Energy Rev. 69 (2017) 1182-1198. https://doi.org/10.1016/j.rser.2016.09.140
  17. C.M. Ettles, J. Seyler, M. Bottenschein, Calculation of a safety margin for hydrogenerator thrust bearings, Tribol. Trans. 48 (2005) 450-456. https://doi.org/10.1080/05698190500313379
  18. L. Zoupas, M. Wodtke, C.I. Papadopoulos, M. Wasilczuk, Effect ofmanufacturing errors of the pad sliding surface on the performance of the hydrodynamic thrust bearing, Tribol. Int. 134 (2019) 211-220. https://doi.org/10.1016/j.triboint.2019.01.046
  19. B. Pap, M. Fillon, M. Guillemont, L. Bauduin, J. Chocron, P. Gedin, L. Biadalla, Experimental and numerical analysis on the seizure of a carbon-filled PTFE central groove journal bearing during start-up period, Lubricants 6 (2018) 14.
  20. L. Cai, W.G. Wang, M.K. Lei, M.Q. Li, B. Zhu, X.S. Su, Study on wear mechanism of thrust bearing of nuclear main pump in cooling water loss condition, Nucl. Power Eng. 42 (2021) 214-221.
  21. Z.C. Wang, F. Guo, Y. Liu, X.F. Liu, Y.M. Wang, Asymmetry characteristic of tilting-pad thrust bearing during the start-up and shut-down process, Ind. Lubric. Tribol. 70 (2018) 1806-1814. https://doi.org/10.1108/ILT-11-2017-0351
  22. M.X. Li, C.H. Gu, X.H. Pan, S.Y. Zheng, Q. Li, A new dynamic mesh algorithm for studying the 3D transient flow field of tilting pad journal bearings, Proc. Inst. Mech. Eng. Part J.- J. Eng. Tribol. 230 (2016) 1470-1482. https://doi.org/10.1177/1350650116638610
  23. C.M. Ettles, J. Seyler, M. Bottenschein, Some effects of start-up and shut-down on thrust bearing assemblies in hydro-generators, J. Tribol. Trans. ASME 125 (2003) 824-832. https://doi.org/10.1115/1.1576428
  24. P. Paja˛czkowski, A. Schubert, M. Wasilczuk, M. Wodtke, Simulation of large thrust-bearing performance at transient states, warm and cold start-up, Proc. Inst. Mech. Eng. Part J.-J. Eng. Tribol. 228 (2013) 96-103. https://doi.org/10.1177/1350650113500483
  25. P.J. Li, Y.S. Zhu, Y.Y. Zhang, Z. Chen, Y.P. Yan, Experimental study of the transient thermal effect and the oil film thickness of the equalizing thrust bearing in the process of start-stop with load, Proc. Inst. Mech. Eng. Part J.-J. Eng. Tribol. 227 (2013) 26-33. https://doi.org/10.1177/1350650112458855
  26. Y.Q. Zhang, Z.Q. Zhang, X.B. Kong, R. Li, Application of dynamic mesh technology in the oil film flow simulation for hydrostatic bearing, Ind. Lubric. Tribol. 71 (2019) 146-153. https://doi.org/10.1108/ILT-08-2017-0222
  27. V. Meruane, R. Pascual, Identification of nonlinear dynamic coefficients in plain journal bearings, Tribol. Int. 41 (2008) 743-754. https://doi.org/10.1016/j.triboint.2008.01.002
  28. X. Deng, Y. Wang, L. Deng, Y.F. Mao, N. Zhao, J. Liu, Analysis of dynamic characteristics of thrust bearing for nuclear power plant RCP during loss of power coastdown, Nucl. Power Eng. 38 (2017) 50-54.