• Title/Summary/Keyword: low-power dissipation

Search Result 341, Processing Time 0.04 seconds

A 10-bit 40-MS/s Low-Power CMOS Pipelined A/D Converter Design (10-bit 40-MS/s 저전력 CMOS 파이프라인 A/D 변환기 설계)

  • Lee, Sea-Young;Yu, Sang-Dae
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.137-144
    • /
    • 1997
  • In this paper, the design of a 10-bit 40-MS/s pipelined A/D converter is implemented to achieve low static power dissipation of 70 mW at the ${\pm}2.5\;V$ or +5 V power supply environment for high speed applications. A 1.5 b/stage pipeline architecture in the proposed ADC is used to allow large correction range for comparator offset and perform the fast interstage signal processing. According to necessity of high-performance op amps for design of the ADC, the new op amp with gain boosting based on a typical folded-cascode architecture is designed by using SAPICE that is an automatic design tool of op amps based on circuit simulation. A dynamic comparator with a capacitive reference voltage divider that consumes nearly no static power for this low power ADC was adopted. The ADC implemented using a $1.0{\mu}m$ n-well CMOS technology exhibits a DNL of ${\pm}0.6$ LSB, INL of +1/-0.75 LSB and SNDR of 56.3 dB for 9.97 MHz input while sampling at 40 MHz.

  • PDF

Design of a Low Power Capacitor Cross-Coupled Common-Gate Low Noise Amplifier (캐패시터 크로스 커플링 방법을 이용한 5.2 GHz 대역에서의 저전력 저잡음 증폭기 설계)

  • Shim, Jae-Min;Jeong, Ji-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.361-366
    • /
    • 2012
  • This paper proposes a low power capacitor cross-coupled 5.2 GHz band low noise amplifier(LNA) using the current-reused topology with the TSMC 0.18 ${\mu}m$ CMOS process. The proposed 5.2 GHz band LNA uses a capacitor cross-coupled $g_m$-boosting method for reducing current flow of circuit and a current-reused topology to decrease total power dissipation. The parallel LC networks are used to reduce size of spiral inductors. The simulation results show high gain of 17.4 dB and noise figure(NF) of 2.7 dB for 5.2 GHz.

Further Specialization of Clustered VLIW Processors: A MAP Decoder for Software Defined Radio

  • Ituero, Pablo;Lopez-Vallejo, Marisa
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.113-128
    • /
    • 2008
  • Turbo codes are extensively used in current communications standards and have a promising outlook for future generations. The advantages of software defined radio, especially dynamic reconfiguration, make it very attractive in this multi-standard scenario. However, the complex and power consuming implementation of the maximum a posteriori (MAP) algorithm, employed by turbo decoders, sets hurdles to this goal. This work introduces an ASIP architecture for the MAP algorithm, based on a dual-clustered VLIW processor. It displays the good performance of application specific designs along with the versatility of processors, which makes it compliant with leading edge standards. The machine deals with multi-operand instructions in an innovative way, the fetching and assertion of data is serialized and the addressing is automatized and transparent for the programmer. The performance-area trade-off of the proposed architecture achieves a throughput of 8 cycles per symbol with very low power dissipation.

  • PDF

A Low Power UART Design by Using Clock-gating (클록 게이팅을 이용한 저전력 UART 설계)

  • Oh, Tae-Young;Song, Sung-Wan;Kim, Hi-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.865-868
    • /
    • 2005
  • This paper presents a Clock-gating technique that reduces power dissipation of the sequential circuits in the system. The Master Clock of a Clock-gating technique is formed by a quaternary variable. It uses the covering relationship between the triggering transition of the clock and the active cycles of various flip-flops to generate a slave clock for each flip-flop in the circuit. At current RTL designs flip-flop is acted by Master clock's triggering but the Slave Clock of Clock-gating technique doesn't occur trigger when external input conditions have not matched with a condition of logic table. We have applied our clocking technique to UART controller of 8bit microprocess

  • PDF

A study of class AB CMOS current conveyors (AB급 CMOS 전류 콘베이어(CCII)에 관한 연구)

  • 차형우;김종필
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.10
    • /
    • pp.19-26
    • /
    • 1997
  • Novel class AB CMOS second-generation current conveyors (CCII) using 0.6.mu.m n-well CMOS process for high-frequency current-mode signal processing were developed. The CCII for low power operation consists of a class AB push-pull stage for the current input, a complementary source follower for the voltage input, and a cascode current mirror for the current output. In this architecture, the two input stages are coupled by current mirrors to reduce the current input impedance. Measurements of the fabricated CCII show that the current input impedance is 875.ohm. and the bandwidth of flat gain when used as a voltage amplifier extends beyond 4MHz. The power dissipation is 1.25mW and the active chip area is 0.2*0.15[mm$\^$2/].

  • PDF

CMOS High Speed Input Offset Canceling Comparator Design with Minimization of Charges Transfer (유동 전하량 최소화를 통한 입력 오프셋 제거 CMOS 고속 비교기의 설계)

  • 이수형;신경민;이재형;정강민
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.963-966
    • /
    • 1999
  • This Paper describes the design of high speed and low power comparator based on the feed forward bias control. Major building blocks of this comparator are composed of input offset canceling circuit and feed forward bias control circuit. The usual offset canceling circuit cancels the offset voltages by storing them in capacitors using MOS switches, The comparator of this paper employs the bias control circuit which generates bias signal from the input signal. The bias signal is applied to the capacitors and keeps the transfer of chares in the capacitors in the minimal amount, therefore making the comparator operate in stable condition and reduce decision time. The comparator in this form has very samll area and power dissipation. Maximum sampling rate is 200 Ms/sec. The comparator is designed in 0.65${\mu}{\textrm}{m}$ technology and the offset is less than 0.5㎷.

  • PDF

Operation Characteristic of Transless type Grid-connected Inverter using Multi-level Switching circuit (멀티레벨 스위칭 회로를 이용한 트렌스리스형 계통 연계 인버터의 동작 특성)

  • Kim, Ju-Yong;No, Kwae-Hyeop;Jung, Tae-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.916-917
    • /
    • 2008
  • In this paper, Switching damage of switches that is used to proposed power conversion system is reduced by soft switching way. dissipation by part resonance and my resonance stress for resonance of resonance circuit are decreased. Is acted by conversion system high effectiveness. Have following characteristic. Design snubber circuit that is used by switch protection in existent hard work rate Topology by resonant circuit for sogt switching, circuit structure was simple and control system is easy. Also, Can generate free output voltage by multi level Tuesday of output that use individuation Power Cell's Phase Shift PWM, and Low-end switching frequency the harmonic is few.

  • PDF

An Energy Recovery Circuit for AC Plasma Display Panel with Serially Coupled Load Capacitance-SER1

  • Yang, Jin-Ho;Whang, Ki-Woong;Kang, Kyoung-Ho;Kim, Young-Sang;Kim, Hee-Hwan;Park, Chang-Bae
    • Journal of Information Display
    • /
    • v.2 no.4
    • /
    • pp.63-67
    • /
    • 2001
  • The switching power loss due to the panel capacitance during sustain period in AC PDP driving system can be minimized by using the energy recovery circuits. We proposed a new energy recovery circuit, SER1 (Seoul national univ. Energy Recovery circuit 1st). The experimental results of its application to a 42-inch surface discharge type AC PDP showed superior performance of SER1 in energy recovery efficiency and low distortion voltage waveform. Energy recovery efficiency of SER1 was measured up to 92.3 %, and the power dissipation during the sustain period was reduced by 15.2 W in 2000 pulse/frame compared with serial LC resonance energy recovery circuit.

  • PDF

An Ultra-Low Power Expandable 4-bit ALU IC using Adiabatic Dynamic CMOS Logic Circuit Technology

  • Kazukiyo Takahashi;Hashimoto, Shin-ichi;Mitsuru Mizunuma
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.937-940
    • /
    • 2000
  • This paper describes expandable 4 bit ALU IC using adiabatic and dynamic CMOS circuit technique. It was designed so that the integrated circuit may have the function which is equivalent to HC181 which is CMOS standard logic IC for the comparison, and it was fabricated using a standard 1.2${\mu}$ CMOS process. As the result, the IC has shown that it operates perfectly on all function modes. The power dissipation is 2 order lower than that of HC 181.

  • PDF

A Study on the Insulation Performance Improvement of Induction Motors Fed by IGBT PWM Inverter (IGBT PWM 인버터 구동 유도전동기의 절연성능 향상기술 연구)

  • Hwang D.H.;Park D.Y.;Kim Y.J.;Lee Y.H.;Kim D.H.;Lee I.W.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.335-339
    • /
    • 2001
  • The recent advancements in power electronic switching devices have enabled high frequency switching operation and have improved the performance of pulse-width modulated (PWM) inverters for driving induction motors. But, the insulation failures of stator winding have attracted much concern due to high dv/dt of IGBT PWM inverter. In this paper, the test results for evaluation on the stator winding insulation of low-voltage induction motors for IGBT PWM inverter applications are presented. The insulation characteristics are analyzed with partial discharge and dissipation factor tests. Also, insulation breakdown tests by switching pulse voltage are performed. An effective insulation technique to enhance the insulation strength is suggested from the test results.

  • PDF