• 제목/요약/키워드: low-melting-point solder

검색결과 19건 처리시간 0.021초

Novel Maskless Bumping for 3D Integration

  • Choi, Kwang-Seong;Sung, Ki-Jun;Lim, Byeong-Ok;Bae, Hyun-Cheol;Jung, Sung-Hae;Moon, Jong-Tae;Eom, Yong-Sung
    • ETRI Journal
    • /
    • 제32권2호
    • /
    • pp.342-344
    • /
    • 2010
  • A novel, maskless, low-volume bumping material, called solder bump maker, which is composed of a resin and low-melting-point solder powder, has been developed. The resin features no distinct chemical reactions preventing the rheological coalescence of the solder, a deoxidation of the oxide layer on the solder powder for wetting on the pad at the solder melting point, and no major weight loss caused by out-gassing. With these characteristics, the solder was successfully wetted onto a metal pad and formed a uniform solder bump array with pitches of 120 ${\mu}m$ and 150 ${\mu}m$.

Novel Bumping Process for Solder on Pad Technology

  • Choi, Kwang-Seong;Bae, Ho-Eun;Bae, Hyun-Cheol;Eom, Yong-Sung
    • ETRI Journal
    • /
    • 제35권2호
    • /
    • pp.340-343
    • /
    • 2013
  • A novel bumping process using solder bump maker is developed for the maskless low-volume solder on pad (SoP) technology of fine-pitch flip chip bonding. The process includes two main steps: one is the aggregation of powdered solder on the metal pads on a substrate via an increase in temperature, and the other is the reflow of the deposited powder to form a low-volume SoP. Since the surface tension that exists when the solder is below its melting point is the major driving force of the solder deposit, only a small quantity of powdered solder adjacent to the pads can join the aggregation process to obtain a uniform, low-volume SoP array on the substrate, regardless of the pad configurations. Through this process, an SoP array on an organic substrate with a pitch of $130{\mu}m$ is successfully formed.

150℃이하 저온에서의 미세 접합 기술 (Low Temperature bonding Technology for Electronic Packaging)

  • 김선철;김영호
    • 마이크로전자및패키징학회지
    • /
    • 제19권1호
    • /
    • pp.17-24
    • /
    • 2012
  • Recently, flip chip interconnection has been increasingly used in microelectronic assemblies. The common Flip chip interconnection is formed by reflow of the solder bumps. Lead-Tin solders and Tin-based solders are most widely used for the solder bump materials. However, the flip chip interconnection using these solder materials cannot be applied to temperature-sensitive components since solder reflow is performed at relatively high temperature. Therefore the development of low temperature bonding technologies is required in these applications. A few bonding techniques at low temperature of $150^{\circ}C$ or below have been reported. They include the reflow soldering using low melting point solder bumps, the transient liquid phase bonding by inter-diffusion between two solders, and the bonding using low temperature curable adhesive. This paper reviews various low temperature bonding methods.

UBM이 단면 증착된 Si-Wafer에 대한 Pb-free 솔더의 무플럭스 젖음 특성 (The Fluxless Wetting Properties of UBM-Coated Si-Wafer to the Pb-Free Solders)

  • 홍순민;박재용;김문일;정재필;강춘식
    • Journal of Welding and Joining
    • /
    • 제18권6호
    • /
    • pp.74-82
    • /
    • 2000
  • The fluxless wetting properties of UBM-coated Si-wafer to the binary lead-free solders(Sn-Ag, Sn-Sb, Sjn-In, Sn0Bi) were estimated by wetting balance method. With the new wettability indices from the wetting curves of one side coated specimen, the wetting property estimation of UBM-coated Si-wafer was possible. For UBM of Si-chip, Au/Cu/Cr UBm was better than au/Ni/TI in the point of wetting time/ At general reflow process temperature, the wettability of high melting point solders(Sn-Sb, Sn-Ag) was better than that of low melting point one(Sn-Bi, Sn-In). The contact angle of the one side coated Si-plate to the solder could be calculated from the force balance equation by measuring the static state force and the tilt angle.

  • PDF

카르복실산계 환원제를 통한 저융점 솔더입자가 포함된 이방성 전도성 접착제의 젖음 특성 향상 연구 (Enhancement of Wetting Characteristics for Anisotropic Conductive Adhesive with Low Melting Point Solder via Carboxylic Acid-based Novel Reductants)

  • 김효미;김주헌
    • 폴리머
    • /
    • 제34권1호
    • /
    • pp.52-57
    • /
    • 2010
  • 고 신뢰도와 높은 물성을 갖는 이방성 전도성접착제(anisotropic conductive adhesive, ACA)용 레진 개발을 위하여, 환원특성을 갖는 카르복실산을 포함한 bisphenol F계열의 에폭시 레진에 저융점 솔더입자(low melting point alloys, LMPA)를 분산시켜 제조하였다. LMPA의 융점에서의 에폭시 레진의 경화특성 및 온도에 따른 유변학 특성을 동적 시차 주사 열량계(differential scanning calorimeter, DSC)와 레오미터(rheometer)로 측정하여 최적화된 ACA 접합 공정을 설계하였다. 접합 공정시 LMPA 표면에 생성되는 산화막을 제거하여 높은 전기전도도와 안정적인 전기적 특성을 얻을 수 있도록 세가지 종류의 카르복실산을 환원제로 사용하여 각각의 젖음(wetting) 특성을 확인하였다. 부틸 카르복실산은 $28^{\circ}$의 낮은 젖음각을 나타내었으나, 경화반응 중 다량의 기포가 발생하는 문제가 있었다. 그러나, 이관능성 카르복실산(1,3-bis(2-carboxypropyl)tetramethyl disaoxane(2-CTMS)) 및 1,3-bis(3-carboxypropyl)tetramethyl disiloxane(3-CTMS))의 경우, 기포의 발생 없이 각각 $18^{\circ}$$20.3^{\circ}$의 매우 우수한 젖음 특성을 보였다.

도전성 접착제에서의 솔더입자의 젖음 특성 (Wetting Characteristic of Solder Particle for Electrically Conductive Adhesive)

  • 양경천;조상현;조윤성;이선병;이성혁;신영의;김종민
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년 추계학술발표대회 개요집
    • /
    • pp.175-177
    • /
    • 2006
  • Electrically Conductive Adhesives(ECAs) with solderable particles have been developed as an alternative to Pb-free solders. Our previous study proved that good wettability of solder particle is a prerequisite for the establishment of conduction paths. In this paper, two types of ECAs were formulated and the wetting characteristic low-melting-point Sn-In solder on Cu and Ni/Au pads was investigated. It was found that Sn-In solder in the developed resin material with reduction capability shows good wettability, especially on Cu pad.

  • PDF

INTERCONNECTION TECHNOLOGY IN ELECTRONIC PACKAGING AND ASSEMBLY

  • Wang, Chunqing;Li, Mingyu;Tian, Yanhong
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.439-449
    • /
    • 2002
  • This paper reviews our recent research works on the interconnection technologies in electronic packaging and assembly. At the aspect of advanced joining methods, laser-ultrasonic fluxless soldering technology was proposed. The characteristic of this technology is that the oxide film was removed through the vibration excitated by high frequency laser change in the molten solder droplet. Application researches of laser soldering technology on solder bumping of BGA packages were carried out. Furthermore, interfacial reaction between SnPb eutectic solder and Au/Ni/Cu pad during laser reflow was analyzed. At the aspect of soldered joints' reliability, the system for predicting and analyzing SMT solder joint shape and reliability(PSAR) has been designed. Optimization design method of soldered joints' structure was brought forward after the investigation of fatigue failure of RC chip devices and BGA packages under temperature cyclic conditions with FEM analysis and experimental study. At the aspect of solder alloy design, alloy design method based on quantum was proposed. The macroproperties such as melting point, wettability and strength were described by the electron parameters. In this way, a great deal of the experimental investigations was replaced, so as to realize the design and research of any kinds of solder alloys with low cost and high efficiency.

  • PDF

Pb-free 솔더 조인트의 인공시효 처리시간과 실험온도에 따른 강도평가 (Strength Evaluation of Pb-free Solder Joints with Artificial Aging Time and Test Temperature)

  • 박소영;양성모;유효선
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.90-96
    • /
    • 2014
  • The conventional SnPb solders were widely used for several decades in the electronic packing system due to the superior mechanical properties such as low melting point, better wettavility and good mechanical fatigue. However, in recent years, owing to adverse effect on the human health and environment, conventional SnPb solders have been replaced by Lead-free solders. In this research, the shear punch(SP) test of Sn-4Ag-(Cu)/Ni pad was performed. Pb-free solder alloys which are the environmentally friendly of the electronic components were performed at $150^{\circ}C$ for 100hr~1000hr to artificial aging processing. In order to evaluate the mechanical properties of solder joints, the SP test was conducted at $30^{\circ}C$ and $50^{\circ}C$. As a result, the maximum shear strength of almost the whole specimens was decreased with the increase in aging time and temperature of SP test. The mechanical properties of Sn-4Ag-0.5Cu solder were most excellent in all Pb-free solder which were produced by the SP test at $30^{\circ}C$.

전자 패키징용 고신뢰성 나노입자 강화솔더 (High reliability nano-reinforced solder for electronic packaging)

  • 정도현;백범규;임송희;정재필
    • 마이크로전자및패키징학회지
    • /
    • 제25권2호
    • /
    • pp.1-8
    • /
    • 2018
  • In the soldering industry, a variety of lead-free solders have been developed as a part of restricting lead in electronic packaging. Sn-Ag-Cu (SAC) lead-free solder is regarded as one of the most superior candidates, owing to its low melting point and high solderability as well as the mechanical property. On the other hand, the mechanical property of SAC solder is directly influenced by intermetallic compounds (IMCs) in the solder joint. Although IMCs in SAC solder play an important role in bonding solder joints and impart strength to the surrounding solder matrix, a large amount of IMCs may cause poor strength, due to their brittle nature. In other words, the mechanical properties of SAC solder are of some concern because of the formation of large and brittle IMCs. As the IMCs grow, they may cause poor device performance, resulting in the failure of the electronic device. Therefore, new solder technologies which can control the IMC growth are necessary to address these issues satisfactorily. There are an advanced nanotechnology for microstructural refinement that lead to improve mechanical properties of solder alloys with nanoparticle additions, which are defined as nano-reinforced solders. These nano-reinforced solders increase the mechanical strength of the solder due to the dispersion hardening as well as solderability of the solder. This paper introduces the nano-reinforced solders, including its principles, types, and various properties.

트렌치 공정을 이용한 단발난집 펜던트 주얼리의 개발 (Method for Manufacturing Single Prong Pendant Jewelry Using Trench Process)

  • 송오성;김익환;이하연
    • 한국산학기술학회논문지
    • /
    • 제2권2호
    • /
    • pp.7-10
    • /
    • 2001
  • 보석이 포함된 장신구는 보석을 고정시키고 최대한 보석의 심미적 기능을 살리기 위해 후면부로부터 금속 난발(prongs)을 사용한다. 최근의 주얼리 산업은 빠른 유행주기 변화에 따른 신속한 개발을 위해 귀금속이 가능한한 적게 들어간 단발난집형의 목걸이 귀걸이류가 필요하다. 본 연구는 단발난집에 보석을 세팅하여 가볍고 안정적인 신개념의 목걸이를 개발하기 위하여 (주)아메스 개발부와 함께 단발난집 공정을 연구하였다. 보석의 측면부분에서 상측으로 중력방향에 대하여 직교하도록 트렌치를 가공하여 금속틀의 프롱을 접촉시키고 저융점을 갖는 소정의 Sn계솔더를 채용하여 트렌치부에 흡침된 솔더를 응고하여 접합을 완성하였다. 실시예로서 완성된 천연 자수정 스톤과 18K Au님의 단발난집에 적용한 결과 기존 제품에 비해 40% 이상의 Au 무게감소에 따른 비용절감과 우수한 착용감의 새로운 펜던트형 장신구의 개발이 가능하였다.

  • PDF