• Title/Summary/Keyword: low-cost carrier

Search Result 158, Processing Time 0.039 seconds

Development of a CSGPS/DR Integrated System for High-precision Trajectory Estimation for the Purpose of Vehicle Navigation

  • Yoo, Sang-Hoon;Lim, Jeong-Min;Oh, Jeong-Hun;Kim, Ho-Beom;Lee, Kwang-Eog;Sung, Tae-Kyung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.3
    • /
    • pp.123-130
    • /
    • 2015
  • In this study, a carrier smoothed global positioning system / dead reckoning (CSGPS/DR) integrated system for high-precision trajectory estimation for the purpose of vehicle navigation was proposed. Existing code-based GPS has a low position accuracy, and carrier-phase differential global positioning system (CPDGPS) has a long waiting time for high-precision positioning and has a problem of high cost due to the establishment of infrastructure. To resolve this, the continuity of a trajectory was guaranteed by integrating CSGPS and DR. The results of the experiment indicated that the trajectory precision of the code-based GPS showed an error performance of more than 30cm, while that of the CSGPS/DR integrated system showed an error performance of less than 10cm. Based on this, it was found that the trajectory precision of the proposed CSGPS/DR integrated system is superior to that of the code-based GPS.

The Influence of Deposition Temperature of ALD n-type Buffer ZnO Layer on Device Characteristics of Electrodeposited Cu2O Thin Film Solar Cells (ALD ZnO 버퍼층 증착 온도가 전착 Cu2O 박막 태양전지 소자 특성에 미치는 영향)

  • Cho, Jae Yu;Tran, Man Hieu;Heo, Jaeyeong
    • Current Photovoltaic Research
    • /
    • v.6 no.1
    • /
    • pp.21-26
    • /
    • 2018
  • Beside several advantages, the PV power generation as a clean energy source, is still below the supply level due to high power generation cost. Therefore, the interest in fabricating low-cost thin film solar cells is increasing continuously. $Cu_2O$, a low cost photovoltaic material, has a wide direct band gap of ~2.1 eV has along with the high theoretical energy conversion efficiency of about 20%. On the other hand, it has other benefits such as earth-abundance, low cost, non-toxic, high carrier mobility ($100cm^2/Vs$). In spite of these various advantages, the efficiency of $Cu_2O$ based solar cells is still significantly lower than the theoretical limit as reported in several literatures. One of the reasons behind the low efficiency of $Cu_2O$ solar cells can be the formation of CuO layer due to atmospheric surface oxidation of $Cu_2O$ absorber layer. In this work, atomic layer deposition method was used to remove the CuO layer that formed on $Cu_2O$ surface. First, $Cu_2O$ absorber layer was deposited by electrodeposition. On top of it buffer (ZnO) and TCO (AZO) layers were deposited by atomic layer deposition and rf-magnetron sputtering respectively. We fabricated the cells with a change in the deposition temperature of buffer layer ranging between $80^{\circ}C$ to $140^{\circ}C$. Finally, we compared the performance of fabricated solar cells, and studied the influence of buffer layer deposition temperature on $Cu_2O$ based solar cells by J-V and XPS measurements.

Effect of Carrier on Labeling and Biodistribution of Re-188-Hydroxyethylidene diphosphonate (담체가 Re-188-Hydroxyethylidene Diphosphonate의 표지와 생체내분포에 미치는 영향)

  • Chang, Young-Soo;Jeong, Jae-Min;Kim, Bo-Kwang;Cho, Jung-Hyuk;Lee, Dong-Soo;Chung, June-Key;Lee, Seung-Jin;Jin, Ren-Jie;Lee, Sang-Eun;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.4
    • /
    • pp.344-352
    • /
    • 2000
  • Purpose: Re-188-Hydroxyethylidene diphosphonate (HEDP) is a new cost-effective agent for systemic radioisotope therapy of metastatic bone pain. We investigated the influence of carrier for labeling and biodistribution of Re-188-HEDP using HEDP kit with or without carrier ($KReO_4$). Materials and Methods: The kits (HEDP 15 mg, gentisic acid 4 mg and $SnCl_2.2H_2O_2$ 4.5 mg) with or without carrier ($KReO_4$ 0.1 mg) were labeled with Re-188 solution, made available from an in-house generator by boiling for 15 min. We compared the labeling efficiency and stability of carrier-added and carrier-free preparations of Re-188-HEDP Biodistribution and imaging studies of each preparation were performed in ICR mice ($1.85{\sim}3.7MBq/0.1ml$) and SD rats ($74.1{\sim}85.2MBq/0.5ml$). Results: The carrier-added preparation showed high labeling efficiency (95% at pH 5) and high stability in serum (88%, 3 hr). However, the carrier-free preparation showed low labeling efficiency (59% at pH 5) and low stability (43%, 3 hr). The carrier-added preparation showed high uptake in bone and low uptake in stomach and kidneys. However, the carrier-free preparation showed lower uptake in bone and higher uptake in both stomach and kidneys, which is supposed to be due to released perrhenate. The carrier-added preparation also showed better images with higher skeletal accumulation, lower uptake in other organs and lower soft tissue uptake than the carrier-free preparation. Conclusion: The results of these studies clearly demonstrate that addition of carrier perrhenate is required for high labeling efficiency, stability, bone uptake and good image quality of Re-188-HEDP.

  • PDF

Optimization of Passivation Process in Upgraded Metallurgical Grade (UMG)-Silicon Solar Cells (UMG 실리콘 태양전지의 패시베이션 공정 연구)

  • Chang, Hyo-Sik;Kim, Yoo-Jin;Kim, Jin-Ho;Hwang, Kwang-Taek;Choi, Kyoon;Ahn, Jon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.438-438
    • /
    • 2009
  • We have investigated the effect of forming gas annealing for Upgraded Metallurgical Grade (UMG)-silicon solar cell in order to obtain low-cost high-efficiency cell using post deposition anneal at a relatively low temperature. We have observed that high concentration hydrogenation effectively passivated the defects and improved the minority carrier lifetime, series resistance and conversion efficiency. It can be attributed to significantly improved hydrogen-passivation in high concentration hydrogen process. This improvement can be explained by the enhanced passivation of silicon solar cell with antireflection layer due to hydrogen re-incorporation. The results of this experiment represent a promising guideline for improving the high-efficiency solar cells by introducing an easy and low cost process of post hydrogenation in optimized condition.

  • PDF

Electrical mechanism analysis of $Al_2O_3$ doped zinc oxide thin films deposited by rotating cylindrical DC magnetron sputtering (원통형 타겟 형태의 DC 마그네트론 스퍼터링을 이용한 산화 아연 박막의 전기적 기제에 대한 분석)

  • Jang, Juyeon;Park, Hyeongsik;Ahn, Sihyun;Jo, Jaehyun;Jang, Kyungsoo;Yi, Junsin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.55.1-55.1
    • /
    • 2010
  • Cost efficient and large area deposition of superior quality $Al_2O_3$ doped zinc oxide (AZO) films is instrumental in many of its applications including solar cell fabrication due to its numerous advantages over ITO films. In this study, AZO films were prepared by a highly efficient rotating cylindrical dc magnetron sputtering system using AZO target, which has a target material utilization above 80%, on glass substrates in argon ambient. A detailed analysis on the electrical, optical and structural characteristics of AZO thin films was carried out for solar cell application. The properties of films were found to critically depend on deposition parameters such as sputtering power, substrate temperature, working pressure, and thickness of the films. A low resistivity of ${\sim}5.5{\times}10-4{\Omega}-cm$ was obtained for films deposited at 2kW, keeping the pressure and substrate temperature constant at 3 mtorr and $230^{\circ}C$ respectively, mainly due to an increase in carrier mobility and large grain size which would reduce the grain boundary scattering. The increase in carrier mobility with power can be attributed to the columnar growth of AZO film with (002) preferred orientation as revealed by XRD analysis. The AZO films showed a high transparency of>87% in the visible wavelength region irrespective of deposition conditions. Our results offers a cost-efficient AZO film deposition method which can fabricate films with significant low resistivity and high transmittance that can find application in thin-film solar cells.

  • PDF

Polar Transmitter with Differential DSM Phase and Digital PWM Envelope

  • Zhou, Bo;Liu, Shuli
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.3
    • /
    • pp.313-321
    • /
    • 2014
  • A low-power low-cost polar transmitter for EDGE is designed in $0.18{\mu}m$ CMOS. A differential delta-sigma modulator (DSM) tunes a three-terminal voltage-controlled oscillator (VCO) to perform RF phase modulation, where the VCO tuning curve is digitally pre-compensated for high linearity and the carrier frequency is calibrated by a dual-mode low-power frequency-locked loop (FLL). A digital intermediate-frequency (IF) pulse-width5 modulator (PWM) drives a complementary power-switch followed by an LC filter to achieve envelope modulation with high efficiency. The proposed transmitter with 9mW power dissipation relaxes the time alignment between the phase and envelope modulations, and achieves an error vector magnitude (EVM) of 4% and phase noise of -123dBc/Hz at 400kHz offset frequency.

Simulation of Slotted CSMA/CA MAC in IEEE 802.15.4 WPAN (IEEE 802.15.4 무선 PAN의 Slotted CSMA/CA MAC 시뮬레이션)

  • Lee Hae Rim;Chung Min Young;Lee Tae-Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.3
    • /
    • pp.101-108
    • /
    • 2005
  • IEEE 802.15.4 low-rate Wireless Personal Area Networks (WPAN) are expected to provide ubiquitous networking between small personal/home devices and sensors with low power consumption and low cost features. The technology employs special CSMA/CA (Carrier Sense Multiple Access/collision Avoidance) to save power consumption for small or portable WPAN-enabled devices. In this paper, we simulation the slotted CSMA/CA of IEEE 802.15.4 MAC and evaluate its performance limit in order to grasp the characteristics of Medium Access Control (MAC) of IEEE 802.15.4 WPAN.

  • PDF

Simulation of Slotted CSMA/CA MAC in IEEE 802.15.4 WPAN (IEEE 802.15.4 무선 PAN의 Slotted CSMA/CA MAC 시뮬레이션)

  • Lee Hae Rim;Chung Min Young;Lee Tae-Jin
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.05a
    • /
    • pp.10-14
    • /
    • 2005
  • IEEE 802.15.4 low-rate Wireless Personal Area Networks(WPAN) are expected to provide ubiquitous networking between small personal/home devices and sensors with low power consumption and low cost features. The technology employs special CSMA/CA (Carrier Sense Multiple Access/collision Avoidance) to save power consumption for small or portable WPAN-enabled devices. In this paper, we simulation the slotted CSMA/CA of IEEE 802.15.4 MAC and evaluate its performance limit in order to grasp the characteristics of Medium Access Control (MAC) of IEEE 802.15.4 WPAN.

  • PDF

A Study on Network Construction Strategies for Long-Haul Low-Cost Carrier Operations

  • Choi, Doo-Won;Han, Neung-Ho
    • Journal of Korea Trade
    • /
    • v.25 no.8
    • /
    • pp.57-74
    • /
    • 2021
  • Purpose - This study aims to analyze the characteristics of network construction by Norwegian Air and AirAsia X, which are recognized as leading airlines in the long-haul LCC market. Based on this analysis, this study intends to provide implications for networking strategies for Korean LCCs that seek to enter the long-haul market when the aviation market stabilizes again upon the end of the COVID-19 pandemic. Design/methodology - To conduct the network analysis on long-haul low-cost airlines, the Official Airline Guide (OAG) Schedule Analyzer was used to extract long-haul data of Norwegian Air and AirAsia X. To analyze the trend of the long-haul route network, we obtained the data from 3 separate years between 2011 and 2019. The network was analyzed using UCINET 6.0 in order to examine the network structure of long-haul low-cost airlines and the growth trend of each stage. Findings - Analyzing the network of long-haul routes by visualizing the network structure of low-cost carriers showed the following results. In its early years, Norwegian Air's long-haul route network, centering on regional airports in Spain and Sweden, connected European regions, the Middle East, and Africa. As time passed, however, the network expanded and became steadily strong as the airline connected airports in other European countries to North America and Asia. In addition, in 2011, AirAsia X showed links to parts of Europe, such as London and Paris, the Middle East and India, and Australia and Northeast Asia, centering on the Kuala Lumpur Airport. Although the routes in Europe were suspended, the network continued to expand while concentrating on routes of less than approximately 7,000 km. It was found that instead of giving up on ultra-long-haul routes such as Europe, the network was further expanded in Northeast Asia, such as the routes in Korea and Japan centering on China. Originality/value - Until the COVID-19 pandemic broke out, Norwegian Air actively expanded long-haul routes, resulting in the number of long-haul routes quintupling since 2011. The unfortunate circumstance, wherein the world aviation market was rendered stagnant due to the outbreak of COVID-19, hit Norwegian Air harder than any other low-cost carriers. However, in the case of AirAsia X, it was found that it did not suffer as much damage as Norwegian Air because it initially withdrew from unprofitable routes over 7,000 km and grew by gradually increasing profitable destinations over shorter distances. When the COVID-19 pandemic ends and the aviation market stabilizes, low-cost carriers around the world, including Korea, that enter the long-haul route market will need to employ strategies to analyze the marketability of potential routes and to launch the routes that yield the highest profits without being bound by distance. For stable growth, it is necessary to take a conservative stance; first, by reviewing the business feasibility of the operating a small number of highly profitable routes, and second, by gradually expanding these routes.

Carbon nanotube/silicon hybrid heterojunctions for photovoltaic devices

  • Castrucci, Paola
    • Advances in nano research
    • /
    • v.2 no.1
    • /
    • pp.23-56
    • /
    • 2014
  • The significant growth of the Si photovoltaic industry has been so far limited due to the high cost of the Si photovoltaic system. In this regard, the most expensive factors are the intrinsic cost of silicon material and the Si solar cell fabrication processes. Conventional Si solar cells have p-n junctions inside for an efficient extraction of light-generated charge carriers. However, the p-n junction is normally formed through very expensive processes requiring very high temperature (${\sim}1000^{\circ}C$). Therefore, several systems are currently under study to form heterojunctions at low temperatures. Among them, carbon nanotube (CNT)/Si hybrid solar cells are very promising, with power conversion efficiency up to 15%. In these cells, the p-type Si layer is replaced by a semitransparent CNT film deposited at room temperature on the n-doped Si wafer, thus giving rise to an overall reduction of the total Si thickness and to the fabrication of a device with cheaper methods at low temperatures. In particular, the CNT film coating the Si wafer acts as a conductive electrode for charge carrier collection and establishes a built-in voltage for separating photocarriers. Moreover, due to the CNT film optical semitransparency, most of the incoming light is absorbed in Si; thus the efficiency of the CNT/Si device is in principle comparable to that of a conventional Si one. In this paper an overview of several factors at the basis of this device operation and of the suggested improvements to its architecture is given. In addition, still open physical/technological issues are also addressed.