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1. INTRODUCTION

In recent years, unmanned autonomous vehicles 

have drawn global attention. The core of an unmanned 

autonomous vehicle is advanced driver assistance system 

(ADAS). In the case of the advanced driver assistance 

system, a vehicle defines the status of the vehicle by 

perceiving and interpreting the surrounding environment 

and position for itself; and by informing the driver about 

this information, it prevents accidents and helps the driver 

travel to a destination. Among the element technologies for 

implementing this system, vehicle navigation technology 

is an essential element technology, which can accurately 

figure out the position of a vehicle. If the position obtained 
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ABSTRACT

In this study, a carrier smoothed global positioning system / dead reckoning (CSGPS/DR) integrated system for high-precision 

trajectory estimation for the purpose of vehicle navigation was proposed. Existing code-based GPS has a low position accuracy, 

and carrier-phase differential global positioning system (CPDGPS) has a long waiting time for high-precision positioning 

and has a problem of high cost due to the establishment of infrastructure. To resolve this, the continuity of a trajectory was 

guaranteed by integrating CSGPS and DR. The results of the experiment indicated that the trajectory precision of the code-

based GPS showed an error performance of more than 30cm, while that of the CSGPS/DR integrated system showed an error 

performance of less than 10cm. Based on this, it was found that the trajectory precision of the proposed CSGPS/DR integrated 

system is superior to that of the code-based GPS.
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using this is linked with image and road information, it 

can be applied as a technology for lane keeping and lateral 

control.

I n  m o s t  v e h i c l e  n a v i g a t i o n  s y s t e m s ,  t h e  c o d e 

measurement of global positioning system (GPS) is 

utilized. However, the code measurement of GPS has a 

problem of low trajectory precision. As an alternative to 

this, a carrier-phase differential global positioning system 

(CPDGPS) technique using the carrier phase measurement 

of GPS can be used to obtain a position solution with an 

accuracy of several centimeters. However, to apply the 

CPDGPS technique, integer ambiguity included in carrier 

phase measurement needs to be determined. For this, 

measurement needs to be collected for several minutes in 

a stationary state. Also, a reference station with correction 

information and a communication infrastructure need 

to be established. Thus, it has disadvantages of distance 

limitation and a lot of cost.

To resolve this, a carrier smoothed global positioning 
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system (CSGPS) technique can be used to obtain a high-

precision trajectory with a precision of less than 30 cm and 

to obtain continuous relative position and attitude. For 

this, a study on the use of the Hatch filter was performed 

(Hatch 1982). The Hatch filter combines the carrier phase 

measurement including a noise of less than 1 cm and 

integer ambiguity and the code measurement with a noise 

of 1~2 m based on the complementary Kalman filter, and 

utilizes the advantages of the two measurements. However, 

this method cannot guarantee the continuity of a trajectory 

because the bias included in a position solution could 

change in case of the change in visible satellites.

On the other hand, dead reckoning (DR) navigation 

can obtain continuous relative position and attitude for 

a short time, but has a problem of accumulating position 

and attitude error element characteristics. Thus, in DR 

navigation, it is important to determine initial position 

and attitude, and to correct the error of DR navigation. 

Therefore, the CSGPS/DR integrated system was designed 

so that continuity could be guaranteed in case of the 

change in bias, using the DR navigation solution of a two-

dimensional model (Lee 2014). In the present study, 

this was implemented using a low-cost model, and it 

was demonstrated that the performance was improved 

compared to that of code-based GPS.

2. DEVELOPMENT OF A CSGPS/DR 
INTEGRATED FILTER

2.1 Measurement and Positioning Solution of GPS

GPS was designed and developed with the purpose of 

obtaining position information at any place in the world. 

For GPS, measurements are broadly divided into code 

measurement, carrier phase measurement, and Doppler 

measurement. Code measurement is repeated at a 

period of about 300 m and has large noise, while carrier is 

repeated at a period of about 0.19 m and has smaller noise 

compared to code measurement. Thus, when carrier phase 

measurement is used, more accurate position could be 

obtained compared to when code measurement is used. 

Doppler measurement is mostly used to estimate velocity, 

and precise velocity could be obtained because Doppler 

also uses carrier. The pseudorange obtained through the 

code tracking loop of a GPS receiver can be expressed as 

follows (Kaplan & Hegarty 2006).

 (1)
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elevation angle increases. Thus, differencing is performed based on a satellite with the highest 
elevation angle. When the reference satellite is marked as 1, differencing between satellites is 
performed as follows. 
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using single measurement. Carrier phase measurement is 
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and multipath. The error for pseudorange and estimated position can be expressed through 
linearization using the Taylor series. 
 

 δ𝜌𝜌𝑖𝑖 = 𝜌𝜌𝑖𝑖 − �̂�𝜌𝑖𝑖 = [ℎ𝑖𝑖𝑇𝑇 1] [
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distance from the satellite, δ𝑝𝑝𝐺𝐺𝐺𝐺𝐺𝐺 = [δ𝑝𝑝𝐺𝐺𝐺𝐺𝐺𝐺,𝑥𝑥 δ𝑝𝑝𝐺𝐺𝐺𝐺𝐺𝐺,𝑦𝑦 δ𝑝𝑝𝐺𝐺𝐺𝐺𝐺𝐺,𝑧𝑧]𝑇𝑇 is the GPS position error, and 
δx = �̂�𝑥𝑢𝑢 − 𝑥𝑥𝑢𝑢, δy = �̂�𝑦𝑢𝑢 − 𝑦𝑦𝑢𝑢, δz = �̂�𝑧𝑢𝑢 − 𝑧𝑧𝑢𝑢 are the X-, Y-, and Z-axis errors, respectively. When 
there are more than four visible satellites, unknowns (δ𝑝𝑝𝐺𝐺𝐺𝐺𝐺𝐺, c ∙ δ𝑏𝑏𝐺𝐺𝐺𝐺𝐺𝐺) can be estimated based on 
the least square method or the Kalman filter, and the position of the receiver can be estimated by 
renewing the position solution of the receiver. In this study, when the position of a receiver was 
needed before performing position estimation using carrier measurement, a position estimation 
technique using code measurement was utilized. 

When the carrier phase measurement of GPS is used, the total change in the distance that a 
vehicle has traveled can be continuously obtained, and precise position measurement is enabled. 
However, carrier phase measurement includes integer ambiguity, and it is difficult to determine 
integer ambiguity in real time. When integer ambiguity included in carrier phase measurement is 
estimated and a carrier smoothed GPS technique that performs navigation using only estimated 
integer ambiguity and carrier phase measurement is used, a high-precision trajectory where bias 
is included in the position solution can be obtained. However, for the actual application of a 
carrier smoothed GPS technique, the change in bias that occurs due to cycle slip or the change in 
visible satellites needs to be compensated. 

If a low-cost receiver using single frequency is used for a carrier smoothed GPS technique, 
it is difficult to determine integer ambiguity in real time using only carrier phase measurement. 
However, when the position solution obtained based on pseudorange and the carrier phase 
measurement are used, integer ambiguity can be estimated using single measurement. Carrier 
phase measurement is as follows (Kaplan & Hegarty 2006). 
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When GPS measurement differenced between satellites is used, the clock bias of the 
receiver can be effectively eliminated. The tropospheric and ionospheric errors decrease as the 
elevation angle increases. Thus, differencing is performed based on a satellite with the highest 
elevation angle. When the reference satellite is marked as 1, differencing between satellites is 
performed as follows. 
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renewing the position solution of the receiver. In this study, when the position of a receiver was 
needed before performing position estimation using carrier measurement, a position estimation 
technique using code measurement was utilized. 

When the carrier phase measurement of GPS is used, the total change in the distance that a 
vehicle has traveled can be continuously obtained, and precise position measurement is enabled. 
However, carrier phase measurement includes integer ambiguity, and it is difficult to determine 
integer ambiguity in real time. When integer ambiguity included in carrier phase measurement is 
estimated and a carrier smoothed GPS technique that performs navigation using only estimated 
integer ambiguity and carrier phase measurement is used, a high-precision trajectory where bias 
is included in the position solution can be obtained. However, for the actual application of a 
carrier smoothed GPS technique, the change in bias that occurs due to cycle slip or the change in 
visible satellites needs to be compensated. 

If a low-cost receiver using single frequency is used for a carrier smoothed GPS technique, 
it is difficult to determine integer ambiguity in real time using only carrier phase measurement. 
However, when the position solution obtained based on pseudorange and the carrier phase 
measurement are used, integer ambiguity can be estimated using single measurement. Carrier 
phase measurement is as follows (Kaplan & Hegarty 2006). 
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visible satellites needs to be compensated. 
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 Φ𝑖𝑖(𝑘𝑘) = |𝑝𝑝𝑖𝑖 − 𝑝𝑝𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺| + 𝜆𝜆𝑁𝑁𝑖𝑖 + 𝑐𝑐 ∙ 𝑏𝑏𝐺𝐺𝐺𝐺𝐺𝐺(𝑘𝑘) + �̀�𝑂1(𝑘𝑘) (3) 
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 Φ𝑖𝑖1(𝑘𝑘) = �̂�𝑟𝑖𝑖1(𝑘𝑘) + ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘)δ𝑝𝑝𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑘𝑘) + 𝜆𝜆𝑁𝑁𝑖𝑖1 + �̀�𝑂𝑖𝑖1(𝑘𝑘) (4)  (4)

where 
 
where Φ𝑖𝑖1(𝑘𝑘) = Φ𝑖𝑖(𝑘𝑘) − Φ1(𝑘𝑘) , �̂�𝑟𝑖𝑖1(𝑘𝑘) = �̂�𝑟𝑖𝑖(𝑘𝑘) − �̂�𝑟1(𝑘𝑘) , ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘) = ℎ𝑖𝑖𝑇𝑇(𝑘𝑘) − ℎ1𝑇𝑇(𝑘𝑘) , 
N𝑖𝑖1(𝑘𝑘) = N𝑖𝑖(𝑘𝑘) − N1(𝑘𝑘), and �̀�𝑂𝑖𝑖1(𝑘𝑘) = �̀�𝑂𝑖𝑖(𝑘𝑘) − �̀�𝑂1(𝑘𝑘). If it is assumed that the noise corrected 
through ephemeris information in a stationary state is negligible (i.e., δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) ≈ 0, �̀�𝑂𝑖𝑖1(𝑘𝑘) ≈
0), the differenced measurement can be expressed as follows. 
 

 Φ𝑖𝑖1(𝑘𝑘) ≈ �̂�𝑟𝑖𝑖1(𝑘𝑘) + 𝜆𝜆𝑁𝑁𝑖𝑖1 (5) 
The integer ambiguity estimated from the differenced measurement at k=0 is as follows. 

 
 �̂�𝑁𝑖𝑖1 = (Φ𝑖𝑖1(0) − �̂�𝑟𝑖𝑖1(0)) 𝜆𝜆⁄  (6) 

 
Assuming that the error terms are negligible, the relationship between estimated integer 

ambiguity and actual integer ambiguity is as follows, where the error is expressed as a constant. 
 

 𝛿𝛿𝑁𝑁𝑖𝑖1 = 𝑁𝑁𝑖𝑖1 − �̂�𝑁𝑖𝑖1 = (�̀�𝑂𝑖𝑖1(0) + ℎ𝑖𝑖1𝑇𝑇(0)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(0) + 𝑐𝑐 ∙ δ𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶(0)) 𝜆𝜆⁄  (7) 
 
When the estimated integer ambiguity is substituted into the carrier measurement 

differenced between satellites in order to perform the carrier smoothed GPS technique, it can be 
expressed as follows. 
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where 𝜔𝜔𝑁𝑁𝑖𝑖 = �̀�𝑂𝑖𝑖1(0) + ℎ𝑖𝑖1𝑇𝑇(0)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(0) + 𝑐𝑐 ∙ δ𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶(0) is the integer ambiguity noise of the i-
th satellite. This can be expressed using a matrix as follows. 
 

Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) = [
Φ21(𝑘𝑘) − �̂�𝑟21(𝑘𝑘) − 𝜆𝜆�̂�𝑁21

⋮
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𝑇𝑇(𝑘𝑘)(Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) − �̀�𝑂(𝑘𝑘) − 𝜔𝜔𝑁𝑁) (10) 
 

However, �̀�𝑂(𝑘𝑘), 𝜔𝜔𝑁𝑁 are not known, and thus the estimated position change, δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘), is 
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] δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) + [
�̀�𝑂21(𝑘𝑘)

⋮
�̀�𝑂𝑖𝑖1(𝑘𝑘)

] + [
𝜔𝜔𝑁𝑁2
⋮

𝜔𝜔𝑁𝑁𝑖𝑖

] 

= 𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) + �̀�𝑂(𝑘𝑘) + 𝜔𝜔𝑁𝑁 

(9) 

 
In addition, the position change, δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘), is as follows. 

 
 δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = (𝐻𝐻𝐶𝐶𝐶𝐶

𝑇𝑇(𝑘𝑘)𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘))
−1𝐻𝐻𝐶𝐶𝐶𝐶

𝑇𝑇(𝑘𝑘)(Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) − �̀�𝑂(𝑘𝑘) − 𝜔𝜔𝑁𝑁) (10) 
 

However, �̀�𝑂(𝑘𝑘), 𝜔𝜔𝑁𝑁 are not known, and thus the estimated position change, δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘), is 
as follows. 
 

 δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = (𝐻𝐻𝐶𝐶𝐶𝐶
𝑇𝑇(𝑘𝑘)𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘))

−1𝐻𝐻𝐶𝐶𝐶𝐶
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where Φ𝑖𝑖1(𝑘𝑘) = Φ𝑖𝑖(𝑘𝑘) − Φ1(𝑘𝑘) , �̂�𝑟𝑖𝑖1(𝑘𝑘) = �̂�𝑟𝑖𝑖(𝑘𝑘) − �̂�𝑟1(𝑘𝑘) , ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘) = ℎ𝑖𝑖𝑇𝑇(𝑘𝑘) − ℎ1𝑇𝑇(𝑘𝑘) , 
N𝑖𝑖1(𝑘𝑘) = N𝑖𝑖(𝑘𝑘) − N1(𝑘𝑘), and �̀�𝑂𝑖𝑖1(𝑘𝑘) = �̀�𝑂𝑖𝑖(𝑘𝑘) − �̀�𝑂1(𝑘𝑘). If it is assumed that the noise corrected 
through ephemeris information in a stationary state is negligible (i.e., δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) ≈ 0, �̀�𝑂𝑖𝑖1(𝑘𝑘) ≈
0), the differenced measurement can be expressed as follows. 
 

 Φ𝑖𝑖1(𝑘𝑘) ≈ �̂�𝑟𝑖𝑖1(𝑘𝑘) + 𝜆𝜆𝑁𝑁𝑖𝑖1 (5) 
The integer ambiguity estimated from the differenced measurement at k=0 is as follows. 

 
 �̂�𝑁𝑖𝑖1 = (Φ𝑖𝑖1(0) − �̂�𝑟𝑖𝑖1(0)) 𝜆𝜆⁄  (6) 

 
Assuming that the error terms are negligible, the relationship between estimated integer 

ambiguity and actual integer ambiguity is as follows, where the error is expressed as a constant. 
 

 𝛿𝛿𝑁𝑁𝑖𝑖1 = 𝑁𝑁𝑖𝑖1 − �̂�𝑁𝑖𝑖1 = (�̀�𝑂𝑖𝑖1(0) + ℎ𝑖𝑖1𝑇𝑇(0)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(0) + 𝑐𝑐 ∙ δ𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶(0)) 𝜆𝜆⁄  (7) 
 
When the estimated integer ambiguity is substituted into the carrier measurement 

differenced between satellites in order to perform the carrier smoothed GPS technique, it can be 
expressed as follows. 

 
 Φ𝑖𝑖1(𝑘𝑘) − �̂�𝑟𝑖𝑖1(𝑘𝑘) − 𝜆𝜆�̂�𝑁𝑖𝑖1 = ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) + �̀�𝑂𝑖𝑖1(𝑘𝑘) + 𝜔𝜔𝑁𝑁𝑖𝑖 (8) 

 
where 𝜔𝜔𝑁𝑁𝑖𝑖 = �̀�𝑂𝑖𝑖1(0) + ℎ𝑖𝑖1𝑇𝑇(0)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(0) + 𝑐𝑐 ∙ δ𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶(0) is the integer ambiguity noise of the i-
th satellite. This can be expressed using a matrix as follows. 
 

Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) = [
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] = [
ℎ21𝑇𝑇(𝑘𝑘)

⋮
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] + [
𝜔𝜔𝑁𝑁2
⋮

𝜔𝜔𝑁𝑁𝑖𝑖

] 
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However, �̀�𝑂(𝑘𝑘), 𝜔𝜔𝑁𝑁 are not known, and thus the estimated position change, δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘), is 
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�̀�𝑂𝑖𝑖1(𝑘𝑘)

] + [
𝜔𝜔𝑁𝑁2
⋮

𝜔𝜔𝑁𝑁𝑖𝑖

] 

= 𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) + �̀�𝑂(𝑘𝑘) + 𝜔𝜔𝑁𝑁 

(9) 

 
In addition, the position change, δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘), is as follows. 

 
 δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = (𝐻𝐻𝐶𝐶𝐶𝐶

𝑇𝑇(𝑘𝑘)𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘))
−1𝐻𝐻𝐶𝐶𝐶𝐶

𝑇𝑇(𝑘𝑘)(Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) − �̀�𝑂(𝑘𝑘) − 𝜔𝜔𝑁𝑁) (10) 
 

However, �̀�𝑂(𝑘𝑘), 𝜔𝜔𝑁𝑁 are not known, and thus the estimated position change, δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘), is 
as follows. 
 

 δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = (𝐻𝐻𝐶𝐶𝐶𝐶
𝑇𝑇(𝑘𝑘)𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘))

−1𝐻𝐻𝐶𝐶𝐶𝐶
𝑇𝑇(𝑘𝑘)Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) (11) 

 

 
where Φ𝑖𝑖1(𝑘𝑘) = Φ𝑖𝑖(𝑘𝑘) − Φ1(𝑘𝑘) , �̂�𝑟𝑖𝑖1(𝑘𝑘) = �̂�𝑟𝑖𝑖(𝑘𝑘) − �̂�𝑟1(𝑘𝑘) , ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘) = ℎ𝑖𝑖𝑇𝑇(𝑘𝑘) − ℎ1𝑇𝑇(𝑘𝑘) , 
N𝑖𝑖1(𝑘𝑘) = N𝑖𝑖(𝑘𝑘) − N1(𝑘𝑘), and �̀�𝑂𝑖𝑖1(𝑘𝑘) = �̀�𝑂𝑖𝑖(𝑘𝑘) − �̀�𝑂1(𝑘𝑘). If it is assumed that the noise corrected 
through ephemeris information in a stationary state is negligible (i.e., δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) ≈ 0, �̀�𝑂𝑖𝑖1(𝑘𝑘) ≈
0), the differenced measurement can be expressed as follows. 
 

 Φ𝑖𝑖1(𝑘𝑘) ≈ �̂�𝑟𝑖𝑖1(𝑘𝑘) + 𝜆𝜆𝑁𝑁𝑖𝑖1 (5) 
The integer ambiguity estimated from the differenced measurement at k=0 is as follows. 

 
 �̂�𝑁𝑖𝑖1 = (Φ𝑖𝑖1(0) − �̂�𝑟𝑖𝑖1(0)) 𝜆𝜆⁄  (6) 

 
Assuming that the error terms are negligible, the relationship between estimated integer 

ambiguity and actual integer ambiguity is as follows, where the error is expressed as a constant. 
 

 𝛿𝛿𝑁𝑁𝑖𝑖1 = 𝑁𝑁𝑖𝑖1 − �̂�𝑁𝑖𝑖1 = (�̀�𝑂𝑖𝑖1(0) + ℎ𝑖𝑖1𝑇𝑇(0)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(0) + 𝑐𝑐 ∙ δ𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶(0)) 𝜆𝜆⁄  (7) 
 
When the estimated integer ambiguity is substituted into the carrier measurement 

differenced between satellites in order to perform the carrier smoothed GPS technique, it can be 
expressed as follows. 

 
 Φ𝑖𝑖1(𝑘𝑘) − �̂�𝑟𝑖𝑖1(𝑘𝑘) − 𝜆𝜆�̂�𝑁𝑖𝑖1 = ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) + �̀�𝑂𝑖𝑖1(𝑘𝑘) + 𝜔𝜔𝑁𝑁𝑖𝑖 (8) 

 
where 𝜔𝜔𝑁𝑁𝑖𝑖 = �̀�𝑂𝑖𝑖1(0) + ℎ𝑖𝑖1𝑇𝑇(0)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(0) + 𝑐𝑐 ∙ δ𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶(0) is the integer ambiguity noise of the i-
th satellite. This can be expressed using a matrix as follows. 
 

Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) = [
Φ21(𝑘𝑘) − �̂�𝑟21(𝑘𝑘) − 𝜆𝜆�̂�𝑁21
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] = [
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⋮
ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘)

] δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) + [
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] + [
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𝜔𝜔𝑁𝑁𝑖𝑖
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In addition, the position change, δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘), is as follows. 
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𝑇𝑇(𝑘𝑘)(Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) − �̀�𝑂(𝑘𝑘) − 𝜔𝜔𝑁𝑁) (10) 
 

However, �̀�𝑂(𝑘𝑘), 𝜔𝜔𝑁𝑁 are not known, and thus the estimated position change, δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘), is 
as follows. 
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. If it is assumed that the noise corrected through 

ephemeris information in a stationary state is negligible (i.e., 

 
where Φ𝑖𝑖1(𝑘𝑘) = Φ𝑖𝑖(𝑘𝑘) − Φ1(𝑘𝑘) , �̂�𝑟𝑖𝑖1(𝑘𝑘) = �̂�𝑟𝑖𝑖(𝑘𝑘) − �̂�𝑟1(𝑘𝑘) , ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘) = ℎ𝑖𝑖𝑇𝑇(𝑘𝑘) − ℎ1𝑇𝑇(𝑘𝑘) , 
N𝑖𝑖1(𝑘𝑘) = N𝑖𝑖(𝑘𝑘) − N1(𝑘𝑘), and �̀�𝑂𝑖𝑖1(𝑘𝑘) = �̀�𝑂𝑖𝑖(𝑘𝑘) − �̀�𝑂1(𝑘𝑘). If it is assumed that the noise corrected 
through ephemeris information in a stationary state is negligible (i.e., δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) ≈ 0, �̀�𝑂𝑖𝑖1(𝑘𝑘) ≈
0), the differenced measurement can be expressed as follows. 
 

 Φ𝑖𝑖1(𝑘𝑘) ≈ �̂�𝑟𝑖𝑖1(𝑘𝑘) + 𝜆𝜆𝑁𝑁𝑖𝑖1 (5) 
The integer ambiguity estimated from the differenced measurement at k=0 is as follows. 

 
 �̂�𝑁𝑖𝑖1 = (Φ𝑖𝑖1(0) − �̂�𝑟𝑖𝑖1(0)) 𝜆𝜆⁄  (6) 

 
Assuming that the error terms are negligible, the relationship between estimated integer 

ambiguity and actual integer ambiguity is as follows, where the error is expressed as a constant. 
 

 𝛿𝛿𝑁𝑁𝑖𝑖1 = 𝑁𝑁𝑖𝑖1 − �̂�𝑁𝑖𝑖1 = (�̀�𝑂𝑖𝑖1(0) + ℎ𝑖𝑖1𝑇𝑇(0)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(0) + 𝑐𝑐 ∙ δ𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶(0)) 𝜆𝜆⁄  (7) 
 
When the estimated integer ambiguity is substituted into the carrier measurement 

differenced between satellites in order to perform the carrier smoothed GPS technique, it can be 
expressed as follows. 

 
 Φ𝑖𝑖1(𝑘𝑘) − �̂�𝑟𝑖𝑖1(𝑘𝑘) − 𝜆𝜆�̂�𝑁𝑖𝑖1 = ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) + �̀�𝑂𝑖𝑖1(𝑘𝑘) + 𝜔𝜔𝑁𝑁𝑖𝑖 (8) 

 
where 𝜔𝜔𝑁𝑁𝑖𝑖 = �̀�𝑂𝑖𝑖1(0) + ℎ𝑖𝑖1𝑇𝑇(0)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(0) + 𝑐𝑐 ∙ δ𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶(0) is the integer ambiguity noise of the i-
th satellite. This can be expressed using a matrix as follows. 
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In addition, the position change, δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘), is as follows. 
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Assuming that the error terms are negligible, the relationship between estimated integer 

ambiguity and actual integer ambiguity is as follows, where the error is expressed as a constant. 
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] + [
𝜔𝜔𝑁𝑁2
⋮

𝜔𝜔𝑁𝑁𝑖𝑖

] 

= 𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) + �̀�𝑂(𝑘𝑘) + 𝜔𝜔𝑁𝑁 

(9) 

 
In addition, the position change, δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘), is as follows. 

 
 δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = (𝐻𝐻𝐶𝐶𝐶𝐶

𝑇𝑇(𝑘𝑘)𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘))
−1𝐻𝐻𝐶𝐶𝐶𝐶

𝑇𝑇(𝑘𝑘)(Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) − �̀�𝑂(𝑘𝑘) − 𝜔𝜔𝑁𝑁) (10) 
 

However, �̀�𝑂(𝑘𝑘), 𝜔𝜔𝑁𝑁 are not known, and thus the estimated position change, δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘), is 
as follows. 
 

 δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = (𝐻𝐻𝐶𝐶𝐶𝐶
𝑇𝑇(𝑘𝑘)𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘))

−1𝐻𝐻𝐶𝐶𝐶𝐶
𝑇𝑇(𝑘𝑘)Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) (11) 

 

 

 

 
where Φ𝑖𝑖1(𝑘𝑘) = Φ𝑖𝑖(𝑘𝑘) − Φ1(𝑘𝑘) , �̂�𝑟𝑖𝑖1(𝑘𝑘) = �̂�𝑟𝑖𝑖(𝑘𝑘) − �̂�𝑟1(𝑘𝑘) , ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘) = ℎ𝑖𝑖𝑇𝑇(𝑘𝑘) − ℎ1𝑇𝑇(𝑘𝑘) , 
N𝑖𝑖1(𝑘𝑘) = N𝑖𝑖(𝑘𝑘) − N1(𝑘𝑘), and �̀�𝑂𝑖𝑖1(𝑘𝑘) = �̀�𝑂𝑖𝑖(𝑘𝑘) − �̀�𝑂1(𝑘𝑘). If it is assumed that the noise corrected 
through ephemeris information in a stationary state is negligible (i.e., δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) ≈ 0, �̀�𝑂𝑖𝑖1(𝑘𝑘) ≈
0), the differenced measurement can be expressed as follows. 
 

 Φ𝑖𝑖1(𝑘𝑘) ≈ �̂�𝑟𝑖𝑖1(𝑘𝑘) + 𝜆𝜆𝑁𝑁𝑖𝑖1 (5) 
The integer ambiguity estimated from the differenced measurement at k=0 is as follows. 

 
 �̂�𝑁𝑖𝑖1 = (Φ𝑖𝑖1(0) − �̂�𝑟𝑖𝑖1(0)) 𝜆𝜆⁄  (6) 

 
Assuming that the error terms are negligible, the relationship between estimated integer 

ambiguity and actual integer ambiguity is as follows, where the error is expressed as a constant. 
 

 𝛿𝛿𝑁𝑁𝑖𝑖1 = 𝑁𝑁𝑖𝑖1 − �̂�𝑁𝑖𝑖1 = (�̀�𝑂𝑖𝑖1(0) + ℎ𝑖𝑖1𝑇𝑇(0)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(0) + 𝑐𝑐 ∙ δ𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶(0)) 𝜆𝜆⁄  (7) 
 
When the estimated integer ambiguity is substituted into the carrier measurement 

differenced between satellites in order to perform the carrier smoothed GPS technique, it can be 
expressed as follows. 

 
 Φ𝑖𝑖1(𝑘𝑘) − �̂�𝑟𝑖𝑖1(𝑘𝑘) − 𝜆𝜆�̂�𝑁𝑖𝑖1 = ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) + �̀�𝑂𝑖𝑖1(𝑘𝑘) + 𝜔𝜔𝑁𝑁𝑖𝑖 (8) 

 
where 𝜔𝜔𝑁𝑁𝑖𝑖 = �̀�𝑂𝑖𝑖1(0) + ℎ𝑖𝑖1𝑇𝑇(0)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(0) + 𝑐𝑐 ∙ δ𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶(0) is the integer ambiguity noise of the i-
th satellite. This can be expressed using a matrix as follows. 
 

Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) = [
Φ21(𝑘𝑘) − �̂�𝑟21(𝑘𝑘) − 𝜆𝜆�̂�𝑁21

⋮
Φ𝑖𝑖1(𝑘𝑘) − �̂�𝑟𝑖𝑖1(𝑘𝑘) − 𝜆𝜆�̂�𝑁𝑖𝑖1

] = [
ℎ21𝑇𝑇(𝑘𝑘)

⋮
ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘)

] δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) + [
�̀�𝑂21(𝑘𝑘)

⋮
�̀�𝑂𝑖𝑖1(𝑘𝑘)

] + [
𝜔𝜔𝑁𝑁2
⋮

𝜔𝜔𝑁𝑁𝑖𝑖

] 

= 𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) + �̀�𝑂(𝑘𝑘) + 𝜔𝜔𝑁𝑁 

(9) 

 
In addition, the position change, δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘), is as follows. 

 
 δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = (𝐻𝐻𝐶𝐶𝐶𝐶

𝑇𝑇(𝑘𝑘)𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘))
−1𝐻𝐻𝐶𝐶𝐶𝐶

𝑇𝑇(𝑘𝑘)(Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) − �̀�𝑂(𝑘𝑘) − 𝜔𝜔𝑁𝑁) (10) 
 

However, �̀�𝑂(𝑘𝑘), 𝜔𝜔𝑁𝑁 are not known, and thus the estimated position change, δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘), is 
as follows. 
 

 δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = (𝐻𝐻𝐶𝐶𝐶𝐶
𝑇𝑇(𝑘𝑘)𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘))

−1𝐻𝐻𝐶𝐶𝐶𝐶
𝑇𝑇(𝑘𝑘)Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) (11) 

 

 (7)

When the estimated integer ambiguity is substituted into 

the carrier measurement differenced between satellites in 

order to perform the carrier smoothed GPS technique, it can 

be expressed as follows.

 
where Φ𝑖𝑖1(𝑘𝑘) = Φ𝑖𝑖(𝑘𝑘) − Φ1(𝑘𝑘) , �̂�𝑟𝑖𝑖1(𝑘𝑘) = �̂�𝑟𝑖𝑖(𝑘𝑘) − �̂�𝑟1(𝑘𝑘) , ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘) = ℎ𝑖𝑖𝑇𝑇(𝑘𝑘) − ℎ1𝑇𝑇(𝑘𝑘) , 
N𝑖𝑖1(𝑘𝑘) = N𝑖𝑖(𝑘𝑘) − N1(𝑘𝑘), and �̀�𝑂𝑖𝑖1(𝑘𝑘) = �̀�𝑂𝑖𝑖(𝑘𝑘) − �̀�𝑂1(𝑘𝑘). If it is assumed that the noise corrected 
through ephemeris information in a stationary state is negligible (i.e., δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) ≈ 0, �̀�𝑂𝑖𝑖1(𝑘𝑘) ≈
0), the differenced measurement can be expressed as follows. 
 

 Φ𝑖𝑖1(𝑘𝑘) ≈ �̂�𝑟𝑖𝑖1(𝑘𝑘) + 𝜆𝜆𝑁𝑁𝑖𝑖1 (5) 
The integer ambiguity estimated from the differenced measurement at k=0 is as follows. 

 
 �̂�𝑁𝑖𝑖1 = (Φ𝑖𝑖1(0) − �̂�𝑟𝑖𝑖1(0)) 𝜆𝜆⁄  (6) 

 
Assuming that the error terms are negligible, the relationship between estimated integer 

ambiguity and actual integer ambiguity is as follows, where the error is expressed as a constant. 
 

 𝛿𝛿𝑁𝑁𝑖𝑖1 = 𝑁𝑁𝑖𝑖1 − �̂�𝑁𝑖𝑖1 = (�̀�𝑂𝑖𝑖1(0) + ℎ𝑖𝑖1𝑇𝑇(0)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(0) + 𝑐𝑐 ∙ δ𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶(0)) 𝜆𝜆⁄  (7) 
 
When the estimated integer ambiguity is substituted into the carrier measurement 

differenced between satellites in order to perform the carrier smoothed GPS technique, it can be 
expressed as follows. 

 
 Φ𝑖𝑖1(𝑘𝑘) − �̂�𝑟𝑖𝑖1(𝑘𝑘) − 𝜆𝜆�̂�𝑁𝑖𝑖1 = ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) + �̀�𝑂𝑖𝑖1(𝑘𝑘) + 𝜔𝜔𝑁𝑁𝑖𝑖 (8) 

 
where 𝜔𝜔𝑁𝑁𝑖𝑖 = �̀�𝑂𝑖𝑖1(0) + ℎ𝑖𝑖1𝑇𝑇(0)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(0) + 𝑐𝑐 ∙ δ𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶(0) is the integer ambiguity noise of the i-
th satellite. This can be expressed using a matrix as follows. 
 

Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) = [
Φ21(𝑘𝑘) − �̂�𝑟21(𝑘𝑘) − 𝜆𝜆�̂�𝑁21

⋮
Φ𝑖𝑖1(𝑘𝑘) − �̂�𝑟𝑖𝑖1(𝑘𝑘) − 𝜆𝜆�̂�𝑁𝑖𝑖1

] = [
ℎ21𝑇𝑇(𝑘𝑘)

⋮
ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘)

] δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) + [
�̀�𝑂21(𝑘𝑘)

⋮
�̀�𝑂𝑖𝑖1(𝑘𝑘)

] + [
𝜔𝜔𝑁𝑁2
⋮

𝜔𝜔𝑁𝑁𝑖𝑖

] 

= 𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) + �̀�𝑂(𝑘𝑘) + 𝜔𝜔𝑁𝑁 

(9) 

 
In addition, the position change, δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘), is as follows. 

 
 δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = (𝐻𝐻𝐶𝐶𝐶𝐶

𝑇𝑇(𝑘𝑘)𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘))
−1𝐻𝐻𝐶𝐶𝐶𝐶

𝑇𝑇(𝑘𝑘)(Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) − �̀�𝑂(𝑘𝑘) − 𝜔𝜔𝑁𝑁) (10) 
 

However, �̀�𝑂(𝑘𝑘), 𝜔𝜔𝑁𝑁 are not known, and thus the estimated position change, δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘), is 
as follows. 
 

 δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = (𝐻𝐻𝐶𝐶𝐶𝐶
𝑇𝑇(𝑘𝑘)𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘))

−1𝐻𝐻𝐶𝐶𝐶𝐶
𝑇𝑇(𝑘𝑘)Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) (11) 
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where 

 
where Φ𝑖𝑖1(𝑘𝑘) = Φ𝑖𝑖(𝑘𝑘) − Φ1(𝑘𝑘) , �̂�𝑟𝑖𝑖1(𝑘𝑘) = �̂�𝑟𝑖𝑖(𝑘𝑘) − �̂�𝑟1(𝑘𝑘) , ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘) = ℎ𝑖𝑖𝑇𝑇(𝑘𝑘) − ℎ1𝑇𝑇(𝑘𝑘) , 
N𝑖𝑖1(𝑘𝑘) = N𝑖𝑖(𝑘𝑘) − N1(𝑘𝑘), and �̀�𝑂𝑖𝑖1(𝑘𝑘) = �̀�𝑂𝑖𝑖(𝑘𝑘) − �̀�𝑂1(𝑘𝑘). If it is assumed that the noise corrected 
through ephemeris information in a stationary state is negligible (i.e., δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) ≈ 0, �̀�𝑂𝑖𝑖1(𝑘𝑘) ≈
0), the differenced measurement can be expressed as follows. 
 

 Φ𝑖𝑖1(𝑘𝑘) ≈ �̂�𝑟𝑖𝑖1(𝑘𝑘) + 𝜆𝜆𝑁𝑁𝑖𝑖1 (5) 
The integer ambiguity estimated from the differenced measurement at k=0 is as follows. 

 
 �̂�𝑁𝑖𝑖1 = (Φ𝑖𝑖1(0) − �̂�𝑟𝑖𝑖1(0)) 𝜆𝜆⁄  (6) 

 
Assuming that the error terms are negligible, the relationship between estimated integer 

ambiguity and actual integer ambiguity is as follows, where the error is expressed as a constant. 
 

 𝛿𝛿𝑁𝑁𝑖𝑖1 = 𝑁𝑁𝑖𝑖1 − �̂�𝑁𝑖𝑖1 = (�̀�𝑂𝑖𝑖1(0) + ℎ𝑖𝑖1𝑇𝑇(0)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(0) + 𝑐𝑐 ∙ δ𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶(0)) 𝜆𝜆⁄  (7) 
 
When the estimated integer ambiguity is substituted into the carrier measurement 

differenced between satellites in order to perform the carrier smoothed GPS technique, it can be 
expressed as follows. 

 
 Φ𝑖𝑖1(𝑘𝑘) − �̂�𝑟𝑖𝑖1(𝑘𝑘) − 𝜆𝜆�̂�𝑁𝑖𝑖1 = ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) + �̀�𝑂𝑖𝑖1(𝑘𝑘) + 𝜔𝜔𝑁𝑁𝑖𝑖 (8) 

 
where 𝜔𝜔𝑁𝑁𝑖𝑖 = �̀�𝑂𝑖𝑖1(0) + ℎ𝑖𝑖1𝑇𝑇(0)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(0) + 𝑐𝑐 ∙ δ𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶(0) is the integer ambiguity noise of the i-
th satellite. This can be expressed using a matrix as follows. 
 

Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) = [
Φ21(𝑘𝑘) − �̂�𝑟21(𝑘𝑘) − 𝜆𝜆�̂�𝑁21

⋮
Φ𝑖𝑖1(𝑘𝑘) − �̂�𝑟𝑖𝑖1(𝑘𝑘) − 𝜆𝜆�̂�𝑁𝑖𝑖1

] = [
ℎ21𝑇𝑇(𝑘𝑘)

⋮
ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘)

] δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) + [
�̀�𝑂21(𝑘𝑘)

⋮
�̀�𝑂𝑖𝑖1(𝑘𝑘)

] + [
𝜔𝜔𝑁𝑁2
⋮

𝜔𝜔𝑁𝑁𝑖𝑖

] 

= 𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) + �̀�𝑂(𝑘𝑘) + 𝜔𝜔𝑁𝑁 

(9) 

 
In addition, the position change, δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘), is as follows. 

 
 δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = (𝐻𝐻𝐶𝐶𝐶𝐶

𝑇𝑇(𝑘𝑘)𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘))
−1𝐻𝐻𝐶𝐶𝐶𝐶

𝑇𝑇(𝑘𝑘)(Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) − �̀�𝑂(𝑘𝑘) − 𝜔𝜔𝑁𝑁) (10) 
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integer ambiguity noise of the i-th satellite. This can be 

expressed using a matrix as follows.
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0), the differenced measurement can be expressed as follows. 
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The integer ambiguity estimated from the differenced measurement at k=0 is as follows. 
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However, �̀�𝑂(𝑘𝑘), 𝜔𝜔𝑁𝑁 are not known, and thus the estimated position change, δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘), is 
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In addition, the position change, 
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N𝑖𝑖1(𝑘𝑘) = N𝑖𝑖(𝑘𝑘) − N1(𝑘𝑘), and �̀�𝑂𝑖𝑖1(𝑘𝑘) = �̀�𝑂𝑖𝑖(𝑘𝑘) − �̀�𝑂1(𝑘𝑘). If it is assumed that the noise corrected 
through ephemeris information in a stationary state is negligible (i.e., δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) ≈ 0, �̀�𝑂𝑖𝑖1(𝑘𝑘) ≈
0), the differenced measurement can be expressed as follows. 
 

 Φ𝑖𝑖1(𝑘𝑘) ≈ �̂�𝑟𝑖𝑖1(𝑘𝑘) + 𝜆𝜆𝑁𝑁𝑖𝑖1 (5) 
The integer ambiguity estimated from the differenced measurement at k=0 is as follows. 

 
 �̂�𝑁𝑖𝑖1 = (Φ𝑖𝑖1(0) − �̂�𝑟𝑖𝑖1(0)) 𝜆𝜆⁄  (6) 

 
Assuming that the error terms are negligible, the relationship between estimated integer 

ambiguity and actual integer ambiguity is as follows, where the error is expressed as a constant. 
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When the estimated integer ambiguity is substituted into the carrier measurement 

differenced between satellites in order to perform the carrier smoothed GPS technique, it can be 
expressed as follows. 
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However, �̀�𝑂(𝑘𝑘), 𝜔𝜔𝑁𝑁 are not known, and thus the estimated position change, δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘), is 
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Assuming that the error terms are negligible, the relationship between estimated integer 

ambiguity and actual integer ambiguity is as follows, where the error is expressed as a constant. 
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When the estimated integer ambiguity is substituted into the carrier measurement 
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However, �̀�𝑂(𝑘𝑘), 𝜔𝜔𝑁𝑁 are not known, and thus the estimated position change, δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘), is 
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where Φ𝑖𝑖1(𝑘𝑘) = Φ𝑖𝑖(𝑘𝑘) − Φ1(𝑘𝑘) , �̂�𝑟𝑖𝑖1(𝑘𝑘) = �̂�𝑟𝑖𝑖(𝑘𝑘) − �̂�𝑟1(𝑘𝑘) , ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘) = ℎ𝑖𝑖𝑇𝑇(𝑘𝑘) − ℎ1𝑇𝑇(𝑘𝑘) , 
N𝑖𝑖1(𝑘𝑘) = N𝑖𝑖(𝑘𝑘) − N1(𝑘𝑘), and �̀�𝑂𝑖𝑖1(𝑘𝑘) = �̀�𝑂𝑖𝑖(𝑘𝑘) − �̀�𝑂1(𝑘𝑘). If it is assumed that the noise corrected 
through ephemeris information in a stationary state is negligible (i.e., δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) ≈ 0, �̀�𝑂𝑖𝑖1(𝑘𝑘) ≈
0), the differenced measurement can be expressed as follows. 
 

 Φ𝑖𝑖1(𝑘𝑘) ≈ �̂�𝑟𝑖𝑖1(𝑘𝑘) + 𝜆𝜆𝑁𝑁𝑖𝑖1 (5) 
The integer ambiguity estimated from the differenced measurement at k=0 is as follows. 

 
 �̂�𝑁𝑖𝑖1 = (Φ𝑖𝑖1(0) − �̂�𝑟𝑖𝑖1(0)) 𝜆𝜆⁄  (6) 

 
Assuming that the error terms are negligible, the relationship between estimated integer 

ambiguity and actual integer ambiguity is as follows, where the error is expressed as a constant. 
 

 𝛿𝛿𝑁𝑁𝑖𝑖1 = 𝑁𝑁𝑖𝑖1 − �̂�𝑁𝑖𝑖1 = (�̀�𝑂𝑖𝑖1(0) + ℎ𝑖𝑖1𝑇𝑇(0)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(0) + 𝑐𝑐 ∙ δ𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶(0)) 𝜆𝜆⁄  (7) 
 
When the estimated integer ambiguity is substituted into the carrier measurement 

differenced between satellites in order to perform the carrier smoothed GPS technique, it can be 
expressed as follows. 
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th satellite. This can be expressed using a matrix as follows. 
 

Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) = [
Φ21(𝑘𝑘) − �̂�𝑟21(𝑘𝑘) − 𝜆𝜆�̂�𝑁21

⋮
Φ𝑖𝑖1(𝑘𝑘) − �̂�𝑟𝑖𝑖1(𝑘𝑘) − 𝜆𝜆�̂�𝑁𝑖𝑖1

] = [
ℎ21𝑇𝑇(𝑘𝑘)

⋮
ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘)

] δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) + [
�̀�𝑂21(𝑘𝑘)

⋮
�̀�𝑂𝑖𝑖1(𝑘𝑘)

] + [
𝜔𝜔𝑁𝑁2
⋮

𝜔𝜔𝑁𝑁𝑖𝑖

] 

= 𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) + �̀�𝑂(𝑘𝑘) + 𝜔𝜔𝑁𝑁 

(9) 

 
In addition, the position change, δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘), is as follows. 

 
 δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = (𝐻𝐻𝐶𝐶𝐶𝐶

𝑇𝑇(𝑘𝑘)𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘))
−1𝐻𝐻𝐶𝐶𝐶𝐶

𝑇𝑇(𝑘𝑘)(Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) − �̀�𝑂(𝑘𝑘) − 𝜔𝜔𝑁𝑁) (10) 
 

However, �̀�𝑂(𝑘𝑘), 𝜔𝜔𝑁𝑁 are not known, and thus the estimated position change, δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘), is 
as follows. 
 

 δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = (𝐻𝐻𝐶𝐶𝐶𝐶
𝑇𝑇(𝑘𝑘)𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘))

−1𝐻𝐻𝐶𝐶𝐶𝐶
𝑇𝑇(𝑘𝑘)Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) (11) 

 

 are not known, and thus the estimated  

position change, 

 
where Φ𝑖𝑖1(𝑘𝑘) = Φ𝑖𝑖(𝑘𝑘) − Φ1(𝑘𝑘) , �̂�𝑟𝑖𝑖1(𝑘𝑘) = �̂�𝑟𝑖𝑖(𝑘𝑘) − �̂�𝑟1(𝑘𝑘) , ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘) = ℎ𝑖𝑖𝑇𝑇(𝑘𝑘) − ℎ1𝑇𝑇(𝑘𝑘) , 
N𝑖𝑖1(𝑘𝑘) = N𝑖𝑖(𝑘𝑘) − N1(𝑘𝑘), and �̀�𝑂𝑖𝑖1(𝑘𝑘) = �̀�𝑂𝑖𝑖(𝑘𝑘) − �̀�𝑂1(𝑘𝑘). If it is assumed that the noise corrected 
through ephemeris information in a stationary state is negligible (i.e., δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) ≈ 0, �̀�𝑂𝑖𝑖1(𝑘𝑘) ≈
0), the differenced measurement can be expressed as follows. 
 

 Φ𝑖𝑖1(𝑘𝑘) ≈ �̂�𝑟𝑖𝑖1(𝑘𝑘) + 𝜆𝜆𝑁𝑁𝑖𝑖1 (5) 
The integer ambiguity estimated from the differenced measurement at k=0 is as follows. 

 
 �̂�𝑁𝑖𝑖1 = (Φ𝑖𝑖1(0) − �̂�𝑟𝑖𝑖1(0)) 𝜆𝜆⁄  (6) 

 
Assuming that the error terms are negligible, the relationship between estimated integer 

ambiguity and actual integer ambiguity is as follows, where the error is expressed as a constant. 
 

 𝛿𝛿𝑁𝑁𝑖𝑖1 = 𝑁𝑁𝑖𝑖1 − �̂�𝑁𝑖𝑖1 = (�̀�𝑂𝑖𝑖1(0) + ℎ𝑖𝑖1𝑇𝑇(0)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(0) + 𝑐𝑐 ∙ δ𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶(0)) 𝜆𝜆⁄  (7) 
 
When the estimated integer ambiguity is substituted into the carrier measurement 

differenced between satellites in order to perform the carrier smoothed GPS technique, it can be 
expressed as follows. 

 
 Φ𝑖𝑖1(𝑘𝑘) − �̂�𝑟𝑖𝑖1(𝑘𝑘) − 𝜆𝜆�̂�𝑁𝑖𝑖1 = ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) + �̀�𝑂𝑖𝑖1(𝑘𝑘) + 𝜔𝜔𝑁𝑁𝑖𝑖 (8) 

 
where 𝜔𝜔𝑁𝑁𝑖𝑖 = �̀�𝑂𝑖𝑖1(0) + ℎ𝑖𝑖1𝑇𝑇(0)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(0) + 𝑐𝑐 ∙ δ𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶(0) is the integer ambiguity noise of the i-
th satellite. This can be expressed using a matrix as follows. 
 

Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) = [
Φ21(𝑘𝑘) − �̂�𝑟21(𝑘𝑘) − 𝜆𝜆�̂�𝑁21

⋮
Φ𝑖𝑖1(𝑘𝑘) − �̂�𝑟𝑖𝑖1(𝑘𝑘) − 𝜆𝜆�̂�𝑁𝑖𝑖1

] = [
ℎ21𝑇𝑇(𝑘𝑘)

⋮
ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘)

] δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) + [
�̀�𝑂21(𝑘𝑘)

⋮
�̀�𝑂𝑖𝑖1(𝑘𝑘)

] + [
𝜔𝜔𝑁𝑁2
⋮

𝜔𝜔𝑁𝑁𝑖𝑖

] 

= 𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) + �̀�𝑂(𝑘𝑘) + 𝜔𝜔𝑁𝑁 

(9) 

 
In addition, the position change, δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘), is as follows. 

 
 δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = (𝐻𝐻𝐶𝐶𝐶𝐶

𝑇𝑇(𝑘𝑘)𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘))
−1𝐻𝐻𝐶𝐶𝐶𝐶

𝑇𝑇(𝑘𝑘)(Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) − �̀�𝑂(𝑘𝑘) − 𝜔𝜔𝑁𝑁) (10) 
 

However, �̀�𝑂(𝑘𝑘), 𝜔𝜔𝑁𝑁 are not known, and thus the estimated position change, δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘), is 
as follows. 
 

 δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = (𝐻𝐻𝐶𝐶𝐶𝐶
𝑇𝑇(𝑘𝑘)𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘))

−1𝐻𝐻𝐶𝐶𝐶𝐶
𝑇𝑇(𝑘𝑘)Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) (11) 

 

, is as follows.

 

 
where Φ𝑖𝑖1(𝑘𝑘) = Φ𝑖𝑖(𝑘𝑘) − Φ1(𝑘𝑘) , �̂�𝑟𝑖𝑖1(𝑘𝑘) = �̂�𝑟𝑖𝑖(𝑘𝑘) − �̂�𝑟1(𝑘𝑘) , ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘) = ℎ𝑖𝑖𝑇𝑇(𝑘𝑘) − ℎ1𝑇𝑇(𝑘𝑘) , 
N𝑖𝑖1(𝑘𝑘) = N𝑖𝑖(𝑘𝑘) − N1(𝑘𝑘), and �̀�𝑂𝑖𝑖1(𝑘𝑘) = �̀�𝑂𝑖𝑖(𝑘𝑘) − �̀�𝑂1(𝑘𝑘). If it is assumed that the noise corrected 
through ephemeris information in a stationary state is negligible (i.e., δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) ≈ 0, �̀�𝑂𝑖𝑖1(𝑘𝑘) ≈
0), the differenced measurement can be expressed as follows. 
 

 Φ𝑖𝑖1(𝑘𝑘) ≈ �̂�𝑟𝑖𝑖1(𝑘𝑘) + 𝜆𝜆𝑁𝑁𝑖𝑖1 (5) 
The integer ambiguity estimated from the differenced measurement at k=0 is as follows. 

 
 �̂�𝑁𝑖𝑖1 = (Φ𝑖𝑖1(0) − �̂�𝑟𝑖𝑖1(0)) 𝜆𝜆⁄  (6) 

 
Assuming that the error terms are negligible, the relationship between estimated integer 

ambiguity and actual integer ambiguity is as follows, where the error is expressed as a constant. 
 

 𝛿𝛿𝑁𝑁𝑖𝑖1 = 𝑁𝑁𝑖𝑖1 − �̂�𝑁𝑖𝑖1 = (�̀�𝑂𝑖𝑖1(0) + ℎ𝑖𝑖1𝑇𝑇(0)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(0) + 𝑐𝑐 ∙ δ𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶(0)) 𝜆𝜆⁄  (7) 
 
When the estimated integer ambiguity is substituted into the carrier measurement 

differenced between satellites in order to perform the carrier smoothed GPS technique, it can be 
expressed as follows. 

 
 Φ𝑖𝑖1(𝑘𝑘) − �̂�𝑟𝑖𝑖1(𝑘𝑘) − 𝜆𝜆�̂�𝑁𝑖𝑖1 = ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) + �̀�𝑂𝑖𝑖1(𝑘𝑘) + 𝜔𝜔𝑁𝑁𝑖𝑖 (8) 

 
where 𝜔𝜔𝑁𝑁𝑖𝑖 = �̀�𝑂𝑖𝑖1(0) + ℎ𝑖𝑖1𝑇𝑇(0)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(0) + 𝑐𝑐 ∙ δ𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶(0) is the integer ambiguity noise of the i-
th satellite. This can be expressed using a matrix as follows. 
 

Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) = [
Φ21(𝑘𝑘) − �̂�𝑟21(𝑘𝑘) − 𝜆𝜆�̂�𝑁21

⋮
Φ𝑖𝑖1(𝑘𝑘) − �̂�𝑟𝑖𝑖1(𝑘𝑘) − 𝜆𝜆�̂�𝑁𝑖𝑖1

] = [
ℎ21𝑇𝑇(𝑘𝑘)

⋮
ℎ𝑖𝑖1𝑇𝑇(𝑘𝑘)

] δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) + [
�̀�𝑂21(𝑘𝑘)

⋮
�̀�𝑂𝑖𝑖1(𝑘𝑘)

] + [
𝜔𝜔𝑁𝑁2
⋮

𝜔𝜔𝑁𝑁𝑖𝑖

] 

= 𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘)δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) + �̀�𝑂(𝑘𝑘) + 𝜔𝜔𝑁𝑁 

(9) 

 
In addition, the position change, δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘), is as follows. 

 
 δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = (𝐻𝐻𝐶𝐶𝐶𝐶

𝑇𝑇(𝑘𝑘)𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘))
−1𝐻𝐻𝐶𝐶𝐶𝐶

𝑇𝑇(𝑘𝑘)(Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) − �̀�𝑂(𝑘𝑘) − 𝜔𝜔𝑁𝑁) (10) 
 

However, �̀�𝑂(𝑘𝑘), 𝜔𝜔𝑁𝑁 are not known, and thus the estimated position change, δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘), is 
as follows. 
 

 δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = (𝐻𝐻𝐶𝐶𝐶𝐶
𝑇𝑇(𝑘𝑘)𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘))
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𝑇𝑇(𝑘𝑘)Δ𝑟𝑟𝐶𝐶𝐶𝐶(𝑘𝑘) (11) 
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In this regard, the error between the estimated position 

change and the actual position change is as follows.

  (12)

If it is assumed that the tropospheric and ionospheric 

errors hardly change within about 15 minutes where they 

have a temporal correlation (i.e., 

In this regard, the error between the estimated position change and the actual position change 
is as follows. 
 

 δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) − δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = (𝐻𝐻𝐶𝐶𝐶𝐶
𝑇𝑇(𝑘𝑘)𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘))

−1
𝐻𝐻𝐶𝐶𝐶𝐶

𝑇𝑇(𝑘𝑘)(�̀�𝑂(𝑘𝑘) + 𝜔𝜔𝑁𝑁) (12) 
 

If it is assumed that the tropospheric and ionospheric errors hardly change within about 15 
minutes where they have a temporal correlation (i.e., �̀�𝑂𝑖𝑖1(𝑘𝑘 − 1) =  �̀�𝑂𝑖𝑖1(𝑘𝑘)), the tropospheric 
and ionospheric errors depending on time are treated as constants. Then, these are combined with 
the error from the estimated integer ambiguity, and it appears as if there is a bias in the position 
solution. However, the troposphere and the ionosphere change with time, and thus the bias 
included in the position solution changes. 

The carrier tracking loop of a GPS receiver provides the difference between the frequencies 
of the received signal and the signal transmitted from a satellite. This difference is caused by the 
Doppler effect depending on the movement of the satellite and the receiver, clock drift, and the 
frequency error of the receiver. The Doppler measurement for the i-th satellite is as follows 
(Noureldin et al. 2013). 

 
 𝑓𝑓𝑑𝑑,𝑖𝑖 = − �̇�𝜌𝑖𝑖 𝜆𝜆⁄  (13) 

 
where 𝑓𝑓𝑑𝑑,𝑖𝑖 is the Doppler measurement for the i-th satellite, and �̇�𝜌𝑖𝑖 is the pseudorange rate for the 
i-th satellite and can be expressed as follows (Grewal et al. 2007). 

 

 �̇�𝜌𝑖𝑖 = (𝑣𝑣𝑖𝑖 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶)
𝑝𝑝𝑖𝑖 − 𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶

|𝑝𝑝𝑖𝑖 − 𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶|
+ c ∙ �̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶 + �̀�𝑂1 (14) 

 
where 𝑣𝑣𝑖𝑖 = [𝑣𝑣𝑖𝑖,𝑥𝑥 𝑣𝑣𝑖𝑖,𝑦𝑦 𝑣𝑣𝑖𝑖,𝑧𝑧]𝑇𝑇  is the velocity of the i-th satellite, 
𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = [𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧]𝑇𝑇 is the velocity of the GPS receiver, �̇�𝜌𝑖𝑖 is the pseudorange rate 
for the i-th satellite, and �̇�𝑏𝑢𝑢 is the clock drift of the receiver. The error for the pseudorange rate 
can be linearized using the Taylor series. 
 

 δ�̇�𝜌𝑖𝑖 = �̇�𝜌𝑖𝑖 − �̇�𝜌�̂�𝑖 = [ℎ𝑖𝑖
𝑇𝑇 1] [

δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶
c ∙ δ�̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶

] + �̀�𝑂1 (15) 

 
where �̇�𝜌�̂�𝑖 = (𝑣𝑣𝑖𝑖 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶) (𝑝𝑝𝑖𝑖 − �̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶) (|𝑝𝑝𝑖𝑖 − �̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶|

𝑖𝑖
)⁄  is the estimated pseudorange rate for the i-

th satellite, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = [δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧]𝑇𝑇 is the error of the GPS receiver velocity, and 
δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 are the position 
errors of the GPS receiver for the X-, Y-, and Z-axis, respectively. When there are more than 
four visible satellites, unknowns (δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶, c ∙ �̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶) can be estimated based on the least square 
method or the Kalman filter, and the velocity of the receiver can be estimated by renewing the 
velocity solution of the receiver. 
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In this regard, the error between the estimated position change and the actual position change 
is as follows. 
 

 δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) − δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = (𝐻𝐻𝐶𝐶𝐶𝐶
𝑇𝑇(𝑘𝑘)𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘))

−1
𝐻𝐻𝐶𝐶𝐶𝐶

𝑇𝑇(𝑘𝑘)(�̀�𝑂(𝑘𝑘) + 𝜔𝜔𝑁𝑁) (12) 
 

If it is assumed that the tropospheric and ionospheric errors hardly change within about 15 
minutes where they have a temporal correlation (i.e., �̀�𝑂𝑖𝑖1(𝑘𝑘 − 1) =  �̀�𝑂𝑖𝑖1(𝑘𝑘)), the tropospheric 
and ionospheric errors depending on time are treated as constants. Then, these are combined with 
the error from the estimated integer ambiguity, and it appears as if there is a bias in the position 
solution. However, the troposphere and the ionosphere change with time, and thus the bias 
included in the position solution changes. 

The carrier tracking loop of a GPS receiver provides the difference between the frequencies 
of the received signal and the signal transmitted from a satellite. This difference is caused by the 
Doppler effect depending on the movement of the satellite and the receiver, clock drift, and the 
frequency error of the receiver. The Doppler measurement for the i-th satellite is as follows 
(Noureldin et al. 2013). 

 
 𝑓𝑓𝑑𝑑,𝑖𝑖 = − �̇�𝜌𝑖𝑖 𝜆𝜆⁄  (13) 

 
where 𝑓𝑓𝑑𝑑,𝑖𝑖 is the Doppler measurement for the i-th satellite, and �̇�𝜌𝑖𝑖 is the pseudorange rate for the 
i-th satellite and can be expressed as follows (Grewal et al. 2007). 

 

 �̇�𝜌𝑖𝑖 = (𝑣𝑣𝑖𝑖 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶)
𝑝𝑝𝑖𝑖 − 𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶

|𝑝𝑝𝑖𝑖 − 𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶|
+ c ∙ �̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶 + �̀�𝑂1 (14) 

 
where 𝑣𝑣𝑖𝑖 = [𝑣𝑣𝑖𝑖,𝑥𝑥 𝑣𝑣𝑖𝑖,𝑦𝑦 𝑣𝑣𝑖𝑖,𝑧𝑧]𝑇𝑇  is the velocity of the i-th satellite, 
𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = [𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧]𝑇𝑇 is the velocity of the GPS receiver, �̇�𝜌𝑖𝑖 is the pseudorange rate 
for the i-th satellite, and �̇�𝑏𝑢𝑢 is the clock drift of the receiver. The error for the pseudorange rate 
can be linearized using the Taylor series. 
 

 δ�̇�𝜌𝑖𝑖 = �̇�𝜌𝑖𝑖 − �̇�𝜌�̂�𝑖 = [ℎ𝑖𝑖
𝑇𝑇 1] [

δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶
c ∙ δ�̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶

] + �̀�𝑂1 (15) 

 
where �̇�𝜌�̂�𝑖 = (𝑣𝑣𝑖𝑖 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶) (𝑝𝑝𝑖𝑖 − �̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶) (|𝑝𝑝𝑖𝑖 − �̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶|

𝑖𝑖
)⁄  is the estimated pseudorange rate for the i-

th satellite, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = [δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧]𝑇𝑇 is the error of the GPS receiver velocity, and 
δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 are the position 
errors of the GPS receiver for the X-, Y-, and Z-axis, respectively. When there are more than 
four visible satellites, unknowns (δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶, c ∙ �̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶) can be estimated based on the least square 
method or the Kalman filter, and the velocity of the receiver can be estimated by renewing the 
velocity solution of the receiver. 
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𝑇𝑇(𝑘𝑘)(�̀�𝑂(𝑘𝑘) + 𝜔𝜔𝑁𝑁) (12) 
 

If it is assumed that the tropospheric and ionospheric errors hardly change within about 15 
minutes where they have a temporal correlation (i.e., �̀�𝑂𝑖𝑖1(𝑘𝑘 − 1) =  �̀�𝑂𝑖𝑖1(𝑘𝑘)), the tropospheric 
and ionospheric errors depending on time are treated as constants. Then, these are combined with 
the error from the estimated integer ambiguity, and it appears as if there is a bias in the position 
solution. However, the troposphere and the ionosphere change with time, and thus the bias 
included in the position solution changes. 

The carrier tracking loop of a GPS receiver provides the difference between the frequencies 
of the received signal and the signal transmitted from a satellite. This difference is caused by the 
Doppler effect depending on the movement of the satellite and the receiver, clock drift, and the 
frequency error of the receiver. The Doppler measurement for the i-th satellite is as follows 
(Noureldin et al. 2013). 

 
 𝑓𝑓𝑑𝑑,𝑖𝑖 = − �̇�𝜌𝑖𝑖 𝜆𝜆⁄  (13) 

 
where 𝑓𝑓𝑑𝑑,𝑖𝑖 is the Doppler measurement for the i-th satellite, and �̇�𝜌𝑖𝑖 is the pseudorange rate for the 
i-th satellite and can be expressed as follows (Grewal et al. 2007). 
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where 𝑣𝑣𝑖𝑖 = [𝑣𝑣𝑖𝑖,𝑥𝑥 𝑣𝑣𝑖𝑖,𝑦𝑦 𝑣𝑣𝑖𝑖,𝑧𝑧]𝑇𝑇  is the velocity of the i-th satellite, 
𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = [𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧]𝑇𝑇 is the velocity of the GPS receiver, �̇�𝜌𝑖𝑖 is the pseudorange rate 
for the i-th satellite, and �̇�𝑏𝑢𝑢 is the clock drift of the receiver. The error for the pseudorange rate 
can be linearized using the Taylor series. 
 

 δ�̇�𝜌𝑖𝑖 = �̇�𝜌𝑖𝑖 − �̇�𝜌�̂�𝑖 = [ℎ𝑖𝑖
𝑇𝑇 1] [
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] + �̀�𝑂1 (15) 

 
where �̇�𝜌�̂�𝑖 = (𝑣𝑣𝑖𝑖 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶) (𝑝𝑝𝑖𝑖 − �̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶) (|𝑝𝑝𝑖𝑖 − �̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶|

𝑖𝑖
)⁄  is the estimated pseudorange rate for the i-

th satellite, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = [δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧]𝑇𝑇 is the error of the GPS receiver velocity, and 
δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 are the position 
errors of the GPS receiver for the X-, Y-, and Z-axis, respectively. When there are more than 
four visible satellites, unknowns (δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶, c ∙ �̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶) can be estimated based on the least square 
method or the Kalman filter, and the velocity of the receiver can be estimated by renewing the 
velocity solution of the receiver. 
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 is the Doppler measurement for the i-th satellite, 

and 

In this regard, the error between the estimated position change and the actual position change 
is as follows. 
 

 δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) − δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = (𝐻𝐻𝐶𝐶𝐶𝐶
𝑇𝑇(𝑘𝑘)𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘))
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𝑇𝑇(𝑘𝑘)(�̀�𝑂(𝑘𝑘) + 𝜔𝜔𝑁𝑁) (12) 
 

If it is assumed that the tropospheric and ionospheric errors hardly change within about 15 
minutes where they have a temporal correlation (i.e., �̀�𝑂𝑖𝑖1(𝑘𝑘 − 1) =  �̀�𝑂𝑖𝑖1(𝑘𝑘)), the tropospheric 
and ionospheric errors depending on time are treated as constants. Then, these are combined with 
the error from the estimated integer ambiguity, and it appears as if there is a bias in the position 
solution. However, the troposphere and the ionosphere change with time, and thus the bias 
included in the position solution changes. 

The carrier tracking loop of a GPS receiver provides the difference between the frequencies 
of the received signal and the signal transmitted from a satellite. This difference is caused by the 
Doppler effect depending on the movement of the satellite and the receiver, clock drift, and the 
frequency error of the receiver. The Doppler measurement for the i-th satellite is as follows 
(Noureldin et al. 2013). 

 
 𝑓𝑓𝑑𝑑,𝑖𝑖 = − �̇�𝜌𝑖𝑖 𝜆𝜆⁄  (13) 

 
where 𝑓𝑓𝑑𝑑,𝑖𝑖 is the Doppler measurement for the i-th satellite, and �̇�𝜌𝑖𝑖 is the pseudorange rate for the 
i-th satellite and can be expressed as follows (Grewal et al. 2007). 

 

 �̇�𝜌𝑖𝑖 = (𝑣𝑣𝑖𝑖 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶)
𝑝𝑝𝑖𝑖 − 𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶

|𝑝𝑝𝑖𝑖 − 𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶|
+ c ∙ �̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶 + �̀�𝑂1 (14) 

 
where 𝑣𝑣𝑖𝑖 = [𝑣𝑣𝑖𝑖,𝑥𝑥 𝑣𝑣𝑖𝑖,𝑦𝑦 𝑣𝑣𝑖𝑖,𝑧𝑧]𝑇𝑇  is the velocity of the i-th satellite, 
𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = [𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧]𝑇𝑇 is the velocity of the GPS receiver, �̇�𝜌𝑖𝑖 is the pseudorange rate 
for the i-th satellite, and �̇�𝑏𝑢𝑢 is the clock drift of the receiver. The error for the pseudorange rate 
can be linearized using the Taylor series. 
 

 δ�̇�𝜌𝑖𝑖 = �̇�𝜌𝑖𝑖 − �̇�𝜌�̂�𝑖 = [ℎ𝑖𝑖
𝑇𝑇 1] [

δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶
c ∙ δ�̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶

] + �̀�𝑂1 (15) 

 
where �̇�𝜌�̂�𝑖 = (𝑣𝑣𝑖𝑖 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶) (𝑝𝑝𝑖𝑖 − �̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶) (|𝑝𝑝𝑖𝑖 − �̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶|

𝑖𝑖
)⁄  is the estimated pseudorange rate for the i-

th satellite, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = [δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧]𝑇𝑇 is the error of the GPS receiver velocity, and 
δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 are the position 
errors of the GPS receiver for the X-, Y-, and Z-axis, respectively. When there are more than 
four visible satellites, unknowns (δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶, c ∙ �̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶) can be estimated based on the least square 
method or the Kalman filter, and the velocity of the receiver can be estimated by renewing the 
velocity solution of the receiver. 
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be expressed as follows (Grewal et al. 2007).

 

In this regard, the error between the estimated position change and the actual position change 
is as follows. 
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𝑇𝑇(𝑘𝑘)(�̀�𝑂(𝑘𝑘) + 𝜔𝜔𝑁𝑁) (12) 
 

If it is assumed that the tropospheric and ionospheric errors hardly change within about 15 
minutes where they have a temporal correlation (i.e., �̀�𝑂𝑖𝑖1(𝑘𝑘 − 1) =  �̀�𝑂𝑖𝑖1(𝑘𝑘)), the tropospheric 
and ionospheric errors depending on time are treated as constants. Then, these are combined with 
the error from the estimated integer ambiguity, and it appears as if there is a bias in the position 
solution. However, the troposphere and the ionosphere change with time, and thus the bias 
included in the position solution changes. 

The carrier tracking loop of a GPS receiver provides the difference between the frequencies 
of the received signal and the signal transmitted from a satellite. This difference is caused by the 
Doppler effect depending on the movement of the satellite and the receiver, clock drift, and the 
frequency error of the receiver. The Doppler measurement for the i-th satellite is as follows 
(Noureldin et al. 2013). 

 
 𝑓𝑓𝑑𝑑,𝑖𝑖 = − �̇�𝜌𝑖𝑖 𝜆𝜆⁄  (13) 

 
where 𝑓𝑓𝑑𝑑,𝑖𝑖 is the Doppler measurement for the i-th satellite, and �̇�𝜌𝑖𝑖 is the pseudorange rate for the 
i-th satellite and can be expressed as follows (Grewal et al. 2007). 
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+ c ∙ �̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶 + �̀�𝑂1 (14) 

 
where 𝑣𝑣𝑖𝑖 = [𝑣𝑣𝑖𝑖,𝑥𝑥 𝑣𝑣𝑖𝑖,𝑦𝑦 𝑣𝑣𝑖𝑖,𝑧𝑧]𝑇𝑇  is the velocity of the i-th satellite, 
𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = [𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧]𝑇𝑇 is the velocity of the GPS receiver, �̇�𝜌𝑖𝑖 is the pseudorange rate 
for the i-th satellite, and �̇�𝑏𝑢𝑢 is the clock drift of the receiver. The error for the pseudorange rate 
can be linearized using the Taylor series. 
 

 δ�̇�𝜌𝑖𝑖 = �̇�𝜌𝑖𝑖 − �̇�𝜌�̂�𝑖 = [ℎ𝑖𝑖
𝑇𝑇 1] [
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] + �̀�𝑂1 (15) 
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𝑖𝑖
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th satellite, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = [δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧]𝑇𝑇 is the error of the GPS receiver velocity, and 
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errors of the GPS receiver for the X-, Y-, and Z-axis, respectively. When there are more than 
four visible satellites, unknowns (δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶, c ∙ �̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶) can be estimated based on the least square 
method or the Kalman filter, and the velocity of the receiver can be estimated by renewing the 
velocity solution of the receiver. 
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In this regard, the error between the estimated position change and the actual position change 
is as follows. 
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If it is assumed that the tropospheric and ionospheric errors hardly change within about 15 
minutes where they have a temporal correlation (i.e., �̀�𝑂𝑖𝑖1(𝑘𝑘 − 1) =  �̀�𝑂𝑖𝑖1(𝑘𝑘)), the tropospheric 
and ionospheric errors depending on time are treated as constants. Then, these are combined with 
the error from the estimated integer ambiguity, and it appears as if there is a bias in the position 
solution. However, the troposphere and the ionosphere change with time, and thus the bias 
included in the position solution changes. 

The carrier tracking loop of a GPS receiver provides the difference between the frequencies 
of the received signal and the signal transmitted from a satellite. This difference is caused by the 
Doppler effect depending on the movement of the satellite and the receiver, clock drift, and the 
frequency error of the receiver. The Doppler measurement for the i-th satellite is as follows 
(Noureldin et al. 2013). 

 
 𝑓𝑓𝑑𝑑,𝑖𝑖 = − �̇�𝜌𝑖𝑖 𝜆𝜆⁄  (13) 
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for the i-th satellite, and �̇�𝑏𝑢𝑢 is the clock drift of the receiver. The error for the pseudorange rate 
can be linearized using the Taylor series. 
 

 δ�̇�𝜌𝑖𝑖 = �̇�𝜌𝑖𝑖 − �̇�𝜌�̂�𝑖 = [ℎ𝑖𝑖
𝑇𝑇 1] [

δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶
c ∙ δ�̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶

] + �̀�𝑂1 (15) 

 
where �̇�𝜌�̂�𝑖 = (𝑣𝑣𝑖𝑖 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶) (𝑝𝑝𝑖𝑖 − �̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶) (|𝑝𝑝𝑖𝑖 − �̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶|

𝑖𝑖
)⁄  is the estimated pseudorange rate for the i-

th satellite, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = [δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧]𝑇𝑇 is the error of the GPS receiver velocity, and 
δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 are the position 
errors of the GPS receiver for the X-, Y-, and Z-axis, respectively. When there are more than 
four visible satellites, unknowns (δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶, c ∙ �̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶) can be estimated based on the least square 
method or the Kalman filter, and the velocity of the receiver can be estimated by renewing the 
velocity solution of the receiver. 
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If it is assumed that the tropospheric and ionospheric errors hardly change within about 15 
minutes where they have a temporal correlation (i.e., �̀�𝑂𝑖𝑖1(𝑘𝑘 − 1) =  �̀�𝑂𝑖𝑖1(𝑘𝑘)), the tropospheric 
and ionospheric errors depending on time are treated as constants. Then, these are combined with 
the error from the estimated integer ambiguity, and it appears as if there is a bias in the position 
solution. However, the troposphere and the ionosphere change with time, and thus the bias 
included in the position solution changes. 

The carrier tracking loop of a GPS receiver provides the difference between the frequencies 
of the received signal and the signal transmitted from a satellite. This difference is caused by the 
Doppler effect depending on the movement of the satellite and the receiver, clock drift, and the 
frequency error of the receiver. The Doppler measurement for the i-th satellite is as follows 
(Noureldin et al. 2013). 

 
 𝑓𝑓𝑑𝑑,𝑖𝑖 = − �̇�𝜌𝑖𝑖 𝜆𝜆⁄  (13) 

 
where 𝑓𝑓𝑑𝑑,𝑖𝑖 is the Doppler measurement for the i-th satellite, and �̇�𝜌𝑖𝑖 is the pseudorange rate for the 
i-th satellite and can be expressed as follows (Grewal et al. 2007). 

 

 �̇�𝜌𝑖𝑖 = (𝑣𝑣𝑖𝑖 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶)
𝑝𝑝𝑖𝑖 − 𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶

|𝑝𝑝𝑖𝑖 − 𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶|
+ c ∙ �̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶 + �̀�𝑂1 (14) 

 
where 𝑣𝑣𝑖𝑖 = [𝑣𝑣𝑖𝑖,𝑥𝑥 𝑣𝑣𝑖𝑖,𝑦𝑦 𝑣𝑣𝑖𝑖,𝑧𝑧]𝑇𝑇  is the velocity of the i-th satellite, 
𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = [𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧]𝑇𝑇 is the velocity of the GPS receiver, �̇�𝜌𝑖𝑖 is the pseudorange rate 
for the i-th satellite, and �̇�𝑏𝑢𝑢 is the clock drift of the receiver. The error for the pseudorange rate 
can be linearized using the Taylor series. 
 

 δ�̇�𝜌𝑖𝑖 = �̇�𝜌𝑖𝑖 − �̇�𝜌�̂�𝑖 = [ℎ𝑖𝑖
𝑇𝑇 1] [

δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶
c ∙ δ�̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶

] + �̀�𝑂1 (15) 

 
where �̇�𝜌�̂�𝑖 = (𝑣𝑣𝑖𝑖 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶) (𝑝𝑝𝑖𝑖 − �̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶) (|𝑝𝑝𝑖𝑖 − �̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶|

𝑖𝑖
)⁄  is the estimated pseudorange rate for the i-

th satellite, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = [δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧]𝑇𝑇 is the error of the GPS receiver velocity, and 
δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 are the position 
errors of the GPS receiver for the X-, Y-, and Z-axis, respectively. When there are more than 
four visible satellites, unknowns (δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶, c ∙ �̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶) can be estimated based on the least square 
method or the Kalman filter, and the velocity of the receiver can be estimated by renewing the 
velocity solution of the receiver. 

 
2.2 DR for Vehicles 
 

 is the velocity of  

the GPS receiver, 

In this regard, the error between the estimated position change and the actual position change 
is as follows. 
 

 δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) − δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = (𝐻𝐻𝐶𝐶𝐶𝐶
𝑇𝑇(𝑘𝑘)𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘))

−1
𝐻𝐻𝐶𝐶𝐶𝐶

𝑇𝑇(𝑘𝑘)(�̀�𝑂(𝑘𝑘) + 𝜔𝜔𝑁𝑁) (12) 
 

If it is assumed that the tropospheric and ionospheric errors hardly change within about 15 
minutes where they have a temporal correlation (i.e., �̀�𝑂𝑖𝑖1(𝑘𝑘 − 1) =  �̀�𝑂𝑖𝑖1(𝑘𝑘)), the tropospheric 
and ionospheric errors depending on time are treated as constants. Then, these are combined with 
the error from the estimated integer ambiguity, and it appears as if there is a bias in the position 
solution. However, the troposphere and the ionosphere change with time, and thus the bias 
included in the position solution changes. 

The carrier tracking loop of a GPS receiver provides the difference between the frequencies 
of the received signal and the signal transmitted from a satellite. This difference is caused by the 
Doppler effect depending on the movement of the satellite and the receiver, clock drift, and the 
frequency error of the receiver. The Doppler measurement for the i-th satellite is as follows 
(Noureldin et al. 2013). 

 
 𝑓𝑓𝑑𝑑,𝑖𝑖 = − �̇�𝜌𝑖𝑖 𝜆𝜆⁄  (13) 

 
where 𝑓𝑓𝑑𝑑,𝑖𝑖 is the Doppler measurement for the i-th satellite, and �̇�𝜌𝑖𝑖 is the pseudorange rate for the 
i-th satellite and can be expressed as follows (Grewal et al. 2007). 

 

 �̇�𝜌𝑖𝑖 = (𝑣𝑣𝑖𝑖 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶)
𝑝𝑝𝑖𝑖 − 𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶

|𝑝𝑝𝑖𝑖 − 𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶|
+ c ∙ �̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶 + �̀�𝑂1 (14) 

 
where 𝑣𝑣𝑖𝑖 = [𝑣𝑣𝑖𝑖,𝑥𝑥 𝑣𝑣𝑖𝑖,𝑦𝑦 𝑣𝑣𝑖𝑖,𝑧𝑧]𝑇𝑇  is the velocity of the i-th satellite, 
𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = [𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧]𝑇𝑇 is the velocity of the GPS receiver, �̇�𝜌𝑖𝑖 is the pseudorange rate 
for the i-th satellite, and �̇�𝑏𝑢𝑢 is the clock drift of the receiver. The error for the pseudorange rate 
can be linearized using the Taylor series. 
 

 δ�̇�𝜌𝑖𝑖 = �̇�𝜌𝑖𝑖 − �̇�𝜌�̂�𝑖 = [ℎ𝑖𝑖
𝑇𝑇 1] [

δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶
c ∙ δ�̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶

] + �̀�𝑂1 (15) 

 
where �̇�𝜌�̂�𝑖 = (𝑣𝑣𝑖𝑖 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶) (𝑝𝑝𝑖𝑖 − �̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶) (|𝑝𝑝𝑖𝑖 − �̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶|

𝑖𝑖
)⁄  is the estimated pseudorange rate for the i-

th satellite, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = [δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧]𝑇𝑇 is the error of the GPS receiver velocity, and 
δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 are the position 
errors of the GPS receiver for the X-, Y-, and Z-axis, respectively. When there are more than 
four visible satellites, unknowns (δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶, c ∙ �̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶) can be estimated based on the least square 
method or the Kalman filter, and the velocity of the receiver can be estimated by renewing the 
velocity solution of the receiver. 

 
2.2 DR for Vehicles 
 

 is the pseudorange rate for the i-th 
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satellite, and 

In this regard, the error between the estimated position change and the actual position change 
is as follows. 
 

 δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) − δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = (𝐻𝐻𝐶𝐶𝐶𝐶
𝑇𝑇(𝑘𝑘)𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘))

−1
𝐻𝐻𝐶𝐶𝐶𝐶

𝑇𝑇(𝑘𝑘)(�̀�𝑂(𝑘𝑘) + 𝜔𝜔𝑁𝑁) (12) 
 

If it is assumed that the tropospheric and ionospheric errors hardly change within about 15 
minutes where they have a temporal correlation (i.e., �̀�𝑂𝑖𝑖1(𝑘𝑘 − 1) =  �̀�𝑂𝑖𝑖1(𝑘𝑘)), the tropospheric 
and ionospheric errors depending on time are treated as constants. Then, these are combined with 
the error from the estimated integer ambiguity, and it appears as if there is a bias in the position 
solution. However, the troposphere and the ionosphere change with time, and thus the bias 
included in the position solution changes. 

The carrier tracking loop of a GPS receiver provides the difference between the frequencies 
of the received signal and the signal transmitted from a satellite. This difference is caused by the 
Doppler effect depending on the movement of the satellite and the receiver, clock drift, and the 
frequency error of the receiver. The Doppler measurement for the i-th satellite is as follows 
(Noureldin et al. 2013). 

 
 𝑓𝑓𝑑𝑑,𝑖𝑖 = − �̇�𝜌𝑖𝑖 𝜆𝜆⁄  (13) 

 
where 𝑓𝑓𝑑𝑑,𝑖𝑖 is the Doppler measurement for the i-th satellite, and �̇�𝜌𝑖𝑖 is the pseudorange rate for the 
i-th satellite and can be expressed as follows (Grewal et al. 2007). 

 

 �̇�𝜌𝑖𝑖 = (𝑣𝑣𝑖𝑖 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶)
𝑝𝑝𝑖𝑖 − 𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶

|𝑝𝑝𝑖𝑖 − 𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶|
+ c ∙ �̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶 + �̀�𝑂1 (14) 

 
where 𝑣𝑣𝑖𝑖 = [𝑣𝑣𝑖𝑖,𝑥𝑥 𝑣𝑣𝑖𝑖,𝑦𝑦 𝑣𝑣𝑖𝑖,𝑧𝑧]𝑇𝑇  is the velocity of the i-th satellite, 
𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = [𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧]𝑇𝑇 is the velocity of the GPS receiver, �̇�𝜌𝑖𝑖 is the pseudorange rate 
for the i-th satellite, and �̇�𝑏𝑢𝑢 is the clock drift of the receiver. The error for the pseudorange rate 
can be linearized using the Taylor series. 
 

 δ�̇�𝜌𝑖𝑖 = �̇�𝜌𝑖𝑖 − �̇�𝜌�̂�𝑖 = [ℎ𝑖𝑖
𝑇𝑇 1] [

δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶
c ∙ δ�̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶

] + �̀�𝑂1 (15) 

 
where �̇�𝜌�̂�𝑖 = (𝑣𝑣𝑖𝑖 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶) (𝑝𝑝𝑖𝑖 − �̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶) (|𝑝𝑝𝑖𝑖 − �̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶|

𝑖𝑖
)⁄  is the estimated pseudorange rate for the i-

th satellite, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = [δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧]𝑇𝑇 is the error of the GPS receiver velocity, and 
δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 are the position 
errors of the GPS receiver for the X-, Y-, and Z-axis, respectively. When there are more than 
four visible satellites, unknowns (δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶, c ∙ �̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶) can be estimated based on the least square 
method or the Kalman filter, and the velocity of the receiver can be estimated by renewing the 
velocity solution of the receiver. 

 
2.2 DR for Vehicles 
 

 is the clock drift of the receiver. The error 

for the pseudorange rate can be linearized using the Taylor 

series.

 

In this regard, the error between the estimated position change and the actual position change 
is as follows. 
 

 δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) − δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = (𝐻𝐻𝐶𝐶𝐶𝐶
𝑇𝑇(𝑘𝑘)𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘))

−1
𝐻𝐻𝐶𝐶𝐶𝐶

𝑇𝑇(𝑘𝑘)(�̀�𝑂(𝑘𝑘) + 𝜔𝜔𝑁𝑁) (12) 
 

If it is assumed that the tropospheric and ionospheric errors hardly change within about 15 
minutes where they have a temporal correlation (i.e., �̀�𝑂𝑖𝑖1(𝑘𝑘 − 1) =  �̀�𝑂𝑖𝑖1(𝑘𝑘)), the tropospheric 
and ionospheric errors depending on time are treated as constants. Then, these are combined with 
the error from the estimated integer ambiguity, and it appears as if there is a bias in the position 
solution. However, the troposphere and the ionosphere change with time, and thus the bias 
included in the position solution changes. 

The carrier tracking loop of a GPS receiver provides the difference between the frequencies 
of the received signal and the signal transmitted from a satellite. This difference is caused by the 
Doppler effect depending on the movement of the satellite and the receiver, clock drift, and the 
frequency error of the receiver. The Doppler measurement for the i-th satellite is as follows 
(Noureldin et al. 2013). 

 
 𝑓𝑓𝑑𝑑,𝑖𝑖 = − �̇�𝜌𝑖𝑖 𝜆𝜆⁄  (13) 

 
where 𝑓𝑓𝑑𝑑,𝑖𝑖 is the Doppler measurement for the i-th satellite, and �̇�𝜌𝑖𝑖 is the pseudorange rate for the 
i-th satellite and can be expressed as follows (Grewal et al. 2007). 
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 δ�̇�𝜌𝑖𝑖 = �̇�𝜌𝑖𝑖 − �̇�𝜌�̂�𝑖 = [ℎ𝑖𝑖
𝑇𝑇 1] [

δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶
c ∙ δ�̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶

] + �̀�𝑂1 (15) 

 
where �̇�𝜌�̂�𝑖 = (𝑣𝑣𝑖𝑖 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶) (𝑝𝑝𝑖𝑖 − �̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶) (|𝑝𝑝𝑖𝑖 − �̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶|

𝑖𝑖
)⁄  is the estimated pseudorange rate for the i-

th satellite, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = [δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧]𝑇𝑇 is the error of the GPS receiver velocity, and 
δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦, δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 = 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧 are the position 
errors of the GPS receiver for the X-, Y-, and Z-axis, respectively. When there are more than 
four visible satellites, unknowns (δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶, c ∙ �̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶) can be estimated based on the least square 
method or the Kalman filter, and the velocity of the receiver can be estimated by renewing the 
velocity solution of the receiver. 
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 is the error of the GPS receiver velocity,  

and 

In this regard, the error between the estimated position change and the actual position change 
is as follows. 
 

 δ�̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) − δ𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = (𝐻𝐻𝐶𝐶𝐶𝐶
𝑇𝑇(𝑘𝑘)𝐻𝐻𝐶𝐶𝐶𝐶(𝑘𝑘))

−1
𝐻𝐻𝐶𝐶𝐶𝐶

𝑇𝑇(𝑘𝑘)(�̀�𝑂(𝑘𝑘) + 𝜔𝜔𝑁𝑁) (12) 
 

If it is assumed that the tropospheric and ionospheric errors hardly change within about 15 
minutes where they have a temporal correlation (i.e., �̀�𝑂𝑖𝑖1(𝑘𝑘 − 1) =  �̀�𝑂𝑖𝑖1(𝑘𝑘)), the tropospheric 
and ionospheric errors depending on time are treated as constants. Then, these are combined with 
the error from the estimated integer ambiguity, and it appears as if there is a bias in the position 
solution. However, the troposphere and the ionosphere change with time, and thus the bias 
included in the position solution changes. 

The carrier tracking loop of a GPS receiver provides the difference between the frequencies 
of the received signal and the signal transmitted from a satellite. This difference is caused by the 
Doppler effect depending on the movement of the satellite and the receiver, clock drift, and the 
frequency error of the receiver. The Doppler measurement for the i-th satellite is as follows 
(Noureldin et al. 2013). 

 
 𝑓𝑓𝑑𝑑,𝑖𝑖 = − �̇�𝜌𝑖𝑖 𝜆𝜆⁄  (13) 

 
where 𝑓𝑓𝑑𝑑,𝑖𝑖 is the Doppler measurement for the i-th satellite, and �̇�𝜌𝑖𝑖 is the pseudorange rate for the 
i-th satellite and can be expressed as follows (Grewal et al. 2007). 
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𝑝𝑝𝑖𝑖 − 𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶

|𝑝𝑝𝑖𝑖 − 𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶|
+ c ∙ �̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶 + �̀�𝑂1 (14) 

 
where 𝑣𝑣𝑖𝑖 = [𝑣𝑣𝑖𝑖,𝑥𝑥 𝑣𝑣𝑖𝑖,𝑦𝑦 𝑣𝑣𝑖𝑖,𝑧𝑧]𝑇𝑇  is the velocity of the i-th satellite, 
𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = [𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧]𝑇𝑇 is the velocity of the GPS receiver, �̇�𝜌𝑖𝑖 is the pseudorange rate 
for the i-th satellite, and �̇�𝑏𝑢𝑢 is the clock drift of the receiver. The error for the pseudorange rate 
can be linearized using the Taylor series. 
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where �̇�𝜌�̂�𝑖 = (𝑣𝑣𝑖𝑖 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶) (𝑝𝑝𝑖𝑖 − �̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶) (|𝑝𝑝𝑖𝑖 − �̂�𝑝𝐶𝐶𝐶𝐶𝐶𝐶|
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four visible satellites, unknowns (δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶, c ∙ �̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶) can be estimated based on the least square 
method or the Kalman filter, and the velocity of the receiver can be estimated by renewing the 
velocity solution of the receiver. 
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and ionospheric errors depending on time are treated as constants. Then, these are combined with 
the error from the estimated integer ambiguity, and it appears as if there is a bias in the position 
solution. However, the troposphere and the ionosphere change with time, and thus the bias 
included in the position solution changes. 

The carrier tracking loop of a GPS receiver provides the difference between the frequencies 
of the received signal and the signal transmitted from a satellite. This difference is caused by the 
Doppler effect depending on the movement of the satellite and the receiver, clock drift, and the 
frequency error of the receiver. The Doppler measurement for the i-th satellite is as follows 
(Noureldin et al. 2013). 
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where 𝑓𝑓𝑑𝑑,𝑖𝑖 is the Doppler measurement for the i-th satellite, and �̇�𝜌𝑖𝑖 is the pseudorange rate for the 
i-th satellite and can be expressed as follows (Grewal et al. 2007). 
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𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = [𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧]𝑇𝑇 is the velocity of the GPS receiver, �̇�𝜌𝑖𝑖 is the pseudorange rate 
for the i-th satellite, and �̇�𝑏𝑢𝑢 is the clock drift of the receiver. The error for the pseudorange rate 
can be linearized using the Taylor series. 
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four visible satellites, unknowns (δ𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶, c ∙ �̇�𝑏𝐶𝐶𝐶𝐶𝐶𝐶) can be estimated based on the least square 
method or the Kalman filter, and the velocity of the receiver can be estimated by renewing the 
velocity solution of the receiver. 
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and ionospheric errors depending on time are treated as constants. Then, these are combined with 
the error from the estimated integer ambiguity, and it appears as if there is a bias in the position 
solution. However, the troposphere and the ionosphere change with time, and thus the bias 
included in the position solution changes. 

The carrier tracking loop of a GPS receiver provides the difference between the frequencies 
of the received signal and the signal transmitted from a satellite. This difference is caused by the 
Doppler effect depending on the movement of the satellite and the receiver, clock drift, and the 
frequency error of the receiver. The Doppler measurement for the i-th satellite is as follows 
(Noureldin et al. 2013). 
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𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = [𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑥𝑥 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑦𝑦 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧]𝑇𝑇 is the velocity of the GPS receiver, �̇�𝜌𝑖𝑖 is the pseudorange rate 
for the i-th satellite, and �̇�𝑏𝑢𝑢 is the clock drift of the receiver. The error for the pseudorange rate 
can be linearized using the Taylor series. 
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frequency error of the receiver. The Doppler measurement for the i-th satellite is as follows 
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The velocity of a vehicle in the navigation frame (n-frame: N, E, D) can be expressed using 

the speed and attitude of the vehicle (Noureldin et al. 2013). Fig. 1 shows the navigation frame of 
the vehicle in this system. 
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As only X and Y, which represent a position on a plane, were considered, the value of the 
roll axis was assumed to be 0. 𝑣𝑣𝐸𝐸, 𝑣𝑣𝑁𝑁, 𝑣𝑣𝑈𝑈  are the velocities in the east, north, and vertical 
directions, respectively, spd is the speed of the vehicle in the moving direction, and 𝜃𝜃, 𝜓𝜓 are the 
climbing angle and attitude angle of the vehicle, respectively. In this study, to obtain the speed of 
the vehicle in the moving direction and the attitude angle of the vehicle, OBD-II and a gyro 
sensor were used. The speed of the vehicle in the moving direction using ODB-II can be defined 
as follows. 
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climbing angle and attitude angle of the vehicle can be obtained by integrating the angular 
velocity, and the angular velocity can be obtained using the output of the gyro sensor. 
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(21) 

 
where ∆t is the sampling period, and the gyro sensor is a digital gyro sensor that outputs the 
angular velocity at time 𝑡𝑡𝑘𝑘. 

 
2.3 CSGPS/DR Integrated System for High-precision Trajectory Estimation 
 

The carrier smoothed GPS/DR integrated navigation system combines a carrier smoothed 
GPS technique that provides precise trajectory and a DR technique that provides a position 
solution that guarantees continuity for a short time. It can provide more precise trajectory using 
the advantage of each system even in case of cycle slip or the change in visible satellites, 
compared to the single use of each system. 

To combine each system, they need to be designed so that the models of each system are 
related to each other. The carrier smoothed GPS/DR system assumes a two-dimensional plane, 
and thus the roll axis and the pitch axis were not considered. Using the bias error (δ𝑏𝑏�̃�𝜔𝑐𝑐𝑧𝑧) and 
conversion factor error (δ𝑠𝑠𝑠𝑠�̃�𝜔) of the gyro that corresponds to the yaw axis, the conversion factor 
error of the odometer (δ𝑠𝑠𝑠𝑠𝑜𝑜), and the error of the attitude angle (δψ), the DR error model was 
derived as follows. 
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+

[
 
 
 
 𝑤𝑤ψ(𝑘𝑘)
𝑤𝑤𝑠𝑠𝑠𝑠�̃�𝜔(𝑘𝑘)
𝑤𝑤𝑏𝑏�̃�𝜔𝑐𝑐𝑧𝑧

(𝑘𝑘)
𝑤𝑤𝑠𝑠𝑠𝑠𝑜𝑜(𝑘𝑘) ]

 
 
 
 
 (22) 

 
where 𝜔𝜔𝑐𝑐𝑧𝑧 = �̃�𝜔𝑐𝑐𝑧𝑧 − 𝑏𝑏𝜔𝜔𝑐𝑐𝑧𝑧 is the output of the gyro with the correction of the installation error, �̃�𝜔𝑐𝑐𝑧𝑧 
is the angular velocity including bias, 𝑏𝑏𝜔𝜔𝑐𝑐𝑧𝑧 is the bias included in �̃�𝜔𝑐𝑐𝑧𝑧, and 𝑠𝑠𝑠𝑠�̃�𝜔 is the conversion 
factor of the gyro. 

Fig. 2 shows the structure of the loosely coupled carrier smoothed GPS/DR integrated filter 
proposed in this study. 

Using the first Kalman filter, the error correction and velocity correction for the DR sensor 
are performed. Then, although the bias included in the position solution of the carrier smoothed 
GPS changes due to the change in the number of visible satellites, more accurate sensor 
correction can be performed because the DR sensor is corrected using the GPS carrier velocity 

 are the biases of the gyro sensor outputs. If it 

is assumed that the bias of the each axis of the gyro sensor 

and the gyro sensor conversion factor are constant during 

the sampling period for the implementation of a system, the 

climbing angle and the attitude angle can be obtained as 

follows.

  
(20)

Fig. 1. Definition of the DR coordinate system.
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which are the outputs of the gyro sensor, and 𝑏𝑏�̃�𝜔𝑥𝑥, 𝑏𝑏�̃�𝜔𝑦𝑦, 𝑏𝑏�̃�𝜔𝑧𝑧  are the biases of the gyro sensor 
outputs. If it is assumed that the bias of the each axis of the gyro sensor and the gyro sensor 
conversion factor are constant during the sampling period for the implementation of a system, 
the climbing angle and the attitude angle can be obtained as follows. 
 

𝜃𝜃(𝑡𝑡𝑘𝑘) ≅ 𝜃𝜃(𝑡𝑡𝑘𝑘−1) + 𝑠𝑠𝑠𝑠�̃�𝜔(𝑡𝑡𝑘𝑘−1) {𝑐𝑐(𝜙𝜙(𝑡𝑡𝑘𝑘−1)) ∙ (�̃�𝜔𝑦𝑦(𝑡𝑡𝑘𝑘) − 𝑏𝑏�̃�𝜔𝑦𝑦(𝑡𝑡𝑘𝑘−1))} ∆t

− 𝑠𝑠𝑠𝑠�̃�𝜔(𝑡𝑡𝑘𝑘−1) {𝑠𝑠(𝜙𝜙(𝑡𝑡𝑘𝑘−1)) ∙ (�̃�𝜔𝑧𝑧(𝑡𝑡𝑘𝑘) − 𝑏𝑏�̃�𝜔𝑧𝑧(𝑡𝑡𝑘𝑘−1))} ∆t 

 
 

(20) 

𝜓𝜓(𝑡𝑡𝑘𝑘) ≅ 𝜓𝜓(𝑡𝑡𝑘𝑘−1) + 𝑠𝑠𝑠𝑠�̃�𝜔(𝑡𝑡𝑘𝑘−1)
𝑐𝑐(𝜃𝜃(𝑡𝑡𝑘𝑘−1))

(𝑡𝑡𝑘𝑘−1) {𝑐𝑐(𝜙𝜙(𝑡𝑡𝑘𝑘−1)) ∙ (�̃�𝜔𝑦𝑦(𝑡𝑡𝑘𝑘) − 𝑏𝑏�̃�𝜔𝑦𝑦(𝑡𝑡𝑘𝑘−1))} ∆t

+ 𝑠𝑠𝑠𝑠�̃�𝜔(𝑡𝑡𝑘𝑘−1)
𝑐𝑐(𝜃𝜃(𝑡𝑡𝑘𝑘−1))

{𝑠𝑠(𝜙𝜙(𝑡𝑡𝑘𝑘−1)) ∙ (�̃�𝜔𝑧𝑧(𝑡𝑡𝑘𝑘) − 𝑏𝑏�̃�𝜔𝑧𝑧(𝑡𝑡𝑘𝑘−1))} ∆t 

 
 

(21) 

 
where ∆t is the sampling period, and the gyro sensor is a digital gyro sensor that outputs the 
angular velocity at time 𝑡𝑡𝑘𝑘. 

 
2.3 CSGPS/DR Integrated System for High-precision Trajectory Estimation 
 

The carrier smoothed GPS/DR integrated navigation system combines a carrier smoothed 
GPS technique that provides precise trajectory and a DR technique that provides a position 
solution that guarantees continuity for a short time. It can provide more precise trajectory using 
the advantage of each system even in case of cycle slip or the change in visible satellites, 
compared to the single use of each system. 

To combine each system, they need to be designed so that the models of each system are 
related to each other. The carrier smoothed GPS/DR system assumes a two-dimensional plane, 
and thus the roll axis and the pitch axis were not considered. Using the bias error (δ𝑏𝑏�̃�𝜔𝑐𝑐𝑧𝑧) and 
conversion factor error (δ𝑠𝑠𝑠𝑠�̃�𝜔) of the gyro that corresponds to the yaw axis, the conversion factor 
error of the odometer (δ𝑠𝑠𝑠𝑠𝑜𝑜), and the error of the attitude angle (δψ), the DR error model was 
derived as follows. 

 

 

[
 
 
 δψ(k + 1)
δ𝑠𝑠𝑠𝑠�̃�𝜔(k + 1)
δ𝑏𝑏�̃�𝜔𝑐𝑐𝑧𝑧(k + 1)
δ𝑠𝑠𝑠𝑠𝑜𝑜(k + 1) ]

 
 
 
= [

1 𝜔𝜔𝑐𝑐𝑧𝑧(𝑘𝑘)∆𝑡𝑡 −𝑠𝑠𝑠𝑠𝑜𝑜(𝑘𝑘) ∙ ∆𝑡𝑡 0
0 1 0 0
0 0 1 0
0 0 0 1

]
[
 
 
 δψ(k)
δ𝑠𝑠𝑠𝑠�̃�𝜔(k)
δ𝑏𝑏�̃�𝜔𝑐𝑐𝑧𝑧(k)
δ𝑠𝑠𝑠𝑠𝑜𝑜(k) ]

 
 
 
+

[
 
 
 
 𝑤𝑤ψ(𝑘𝑘)
𝑤𝑤𝑠𝑠𝑠𝑠�̃�𝜔(𝑘𝑘)
𝑤𝑤𝑏𝑏�̃�𝜔𝑐𝑐𝑧𝑧

(𝑘𝑘)
𝑤𝑤𝑠𝑠𝑠𝑠𝑜𝑜(𝑘𝑘) ]

 
 
 
 
 (22) 

 
where 𝜔𝜔𝑐𝑐𝑧𝑧 = �̃�𝜔𝑐𝑐𝑧𝑧 − 𝑏𝑏𝜔𝜔𝑐𝑐𝑧𝑧 is the output of the gyro with the correction of the installation error, �̃�𝜔𝑐𝑐𝑧𝑧 
is the angular velocity including bias, 𝑏𝑏𝜔𝜔𝑐𝑐𝑧𝑧 is the bias included in �̃�𝜔𝑐𝑐𝑧𝑧, and 𝑠𝑠𝑠𝑠�̃�𝜔 is the conversion 
factor of the gyro. 

Fig. 2 shows the structure of the loosely coupled carrier smoothed GPS/DR integrated filter 
proposed in this study. 

Using the first Kalman filter, the error correction and velocity correction for the DR sensor 
are performed. Then, although the bias included in the position solution of the carrier smoothed 
GPS changes due to the change in the number of visible satellites, more accurate sensor 
correction can be performed because the DR sensor is corrected using the GPS carrier velocity 

 
(21)

where Δt is the sampling period, and the gyro sensor is a 

digital gyro sensor that outputs the angular velocity at time 

DR navigation is an independent navigation technique that calculates a relative position 
compared to a prior position using the attitude and velocity of a vehicle. However, it has a 
disadvantage of accumulating error with time. Thus, for the actual application of DR navigation, 
error correction is important. On the other hand, general DR navigation applied to a vehicle is 
modeled assuming that a vehicle travels on a two-dimensional plane (Titterton & Weston 2004). 

In this study, for DR navigation, a gyro sensor and a velocity sensor outputted through on-
board diagnostics-II (OBD-II) were used. If there is no error for the initial position of a vehicle 
and the velocity of the vehicle is accurately known, the position of the vehicle can be expressed 
by integrating the velocity of the vehicle. 

 

 𝑝𝑝 = 𝑝𝑝0 + ∫ 𝑣𝑣
𝑡𝑡

𝑡𝑡0
𝑑𝑑𝑑𝑑 (16) 

 
The velocity of a vehicle in the navigation frame (n-frame: N, E, D) can be expressed using 

the speed and attitude of the vehicle (Noureldin et al. 2013). Fig. 1 shows the navigation frame of 
the vehicle in this system. 

 
 

 𝑣𝑣 = [𝑣𝑣𝐸𝐸 𝑣𝑣𝑁𝑁 𝑣𝑣𝑈𝑈]𝑇𝑇 = 𝑠𝑠𝑝𝑝𝑑𝑑[(𝑐𝑐(𝜃𝜃) ∙ 𝑠𝑠(𝜓𝜓)) (𝑐𝑐(𝜃𝜃) ∙ 𝑐𝑐(𝜓𝜓)) 𝑠𝑠(𝜃𝜃)]𝑇𝑇 (17) 
 

As only X and Y, which represent a position on a plane, were considered, the value of the 
roll axis was assumed to be 0. 𝑣𝑣𝐸𝐸, 𝑣𝑣𝑁𝑁, 𝑣𝑣𝑈𝑈  are the velocities in the east, north, and vertical 
directions, respectively, spd is the speed of the vehicle in the moving direction, and 𝜃𝜃, 𝜓𝜓 are the 
climbing angle and attitude angle of the vehicle, respectively. In this study, to obtain the speed of 
the vehicle in the moving direction and the attitude angle of the vehicle, OBD-II and a gyro 
sensor were used. The speed of the vehicle in the moving direction using ODB-II can be defined 
as follows. 
 

 spd(𝑑𝑑𝑘𝑘) = 𝑠𝑠𝑠𝑠𝑜𝑜(𝑑𝑑𝑘𝑘) ∙ 𝑠𝑠𝑜𝑜(𝑑𝑑𝑘𝑘) (18) 
 
where spd(𝑑𝑑𝑘𝑘) is the speed of the vehicle in the moving direction at time 𝑑𝑑𝑘𝑘 , 𝑠𝑠𝑠𝑠𝑜𝑜(𝑑𝑑𝑘𝑘) is the 
conversion factor for the speed of the vehicle in the moving direction outputted from OBD-II, 
and 𝑠𝑠𝑜𝑜(𝑑𝑑𝑘𝑘) is the speed of the vehicle in the moving direction outputted from OBD-II. The 
climbing angle and attitude angle of the vehicle can be obtained by integrating the angular 
velocity, and the angular velocity can be obtained using the output of the gyro sensor. 
 

 [
�̇�𝜙
�̇�𝜃
�̇�𝜓

] = 𝑠𝑠𝑠𝑠�̃�𝜔
[
 
 
 1 𝑠𝑠(𝜙𝜙)𝑑𝑑(𝜃𝜃) 𝑐𝑐(𝜙𝜙)𝑑𝑑(𝜃𝜃)
0 𝑐𝑐(𝜙𝜙) −𝑠𝑠(𝜙𝜙)

0 𝑠𝑠(𝜙𝜙)
𝑐𝑐(𝜃𝜃)

𝑐𝑐(𝜙𝜙)
𝑐𝑐(𝜃𝜃) ]

 
 
 
[
�̃�𝜔𝑥𝑥 − 𝑏𝑏�̃�𝜔𝑥𝑥
�̃�𝜔𝑦𝑦 − 𝑏𝑏�̃�𝜔𝑦𝑦

�̃�𝜔𝑧𝑧 − 𝑏𝑏�̃�𝜔𝑧𝑧

] (19) 

 
where �̇�𝜙, �̇�𝜃, �̇�𝜓 are the angular velocities of each axis, respectively, 𝑠𝑠𝑠𝑠�̃�𝜔 is the conversion factor of 
the gyro provided by the gyro manufacturer, �̃�𝜔𝑥𝑥, �̃�𝜔𝑦𝑦, �̃�𝜔𝑧𝑧 are the angular velocities including bias 

.

2.3 CSGPS/DR Integrated System for High-precision 

Trajectory Estimation

The carrier smoothed GPS/DR integrated navigation 

system combines a carrier smoothed GPS technique 

that provides precise trajectory and a DR technique that 

provides a position solution that guarantees continuity for a 

short time. It can provide more precise trajectory using the 

advantage of each system even in case of cycle slip or the 

change in visible satellites, compared to the single use of 

each system.

To combine each system, they need to be designed so 

that the models of each system are related to each other. 

The carrier smoothed GPS/DR system assumes a two-

dimensional plane, and thus the roll axis and the pitch 

axis were not considered. Using the bias error (

which are the outputs of the gyro sensor, and 𝑏𝑏�̃�𝜔𝑥𝑥, 𝑏𝑏�̃�𝜔𝑦𝑦, 𝑏𝑏�̃�𝜔𝑧𝑧  are the biases of the gyro sensor 
outputs. If it is assumed that the bias of the each axis of the gyro sensor and the gyro sensor 
conversion factor are constant during the sampling period for the implementation of a system, 
the climbing angle and the attitude angle can be obtained as follows. 
 

𝜃𝜃(𝑡𝑡𝑘𝑘) ≅ 𝜃𝜃(𝑡𝑡𝑘𝑘−1) + 𝑠𝑠𝑠𝑠�̃�𝜔(𝑡𝑡𝑘𝑘−1) {𝑐𝑐(𝜙𝜙(𝑡𝑡𝑘𝑘−1)) ∙ (�̃�𝜔𝑦𝑦(𝑡𝑡𝑘𝑘) − 𝑏𝑏�̃�𝜔𝑦𝑦(𝑡𝑡𝑘𝑘−1))} ∆t

− 𝑠𝑠𝑠𝑠�̃�𝜔(𝑡𝑡𝑘𝑘−1) {𝑠𝑠(𝜙𝜙(𝑡𝑡𝑘𝑘−1)) ∙ (�̃�𝜔𝑧𝑧(𝑡𝑡𝑘𝑘) − 𝑏𝑏�̃�𝜔𝑧𝑧(𝑡𝑡𝑘𝑘−1))} ∆t 

 
 

(20) 

𝜓𝜓(𝑡𝑡𝑘𝑘) ≅ 𝜓𝜓(𝑡𝑡𝑘𝑘−1) + 𝑠𝑠𝑠𝑠�̃�𝜔(𝑡𝑡𝑘𝑘−1)
𝑐𝑐(𝜃𝜃(𝑡𝑡𝑘𝑘−1))

(𝑡𝑡𝑘𝑘−1) {𝑐𝑐(𝜙𝜙(𝑡𝑡𝑘𝑘−1)) ∙ (�̃�𝜔𝑦𝑦(𝑡𝑡𝑘𝑘) − 𝑏𝑏�̃�𝜔𝑦𝑦(𝑡𝑡𝑘𝑘−1))} ∆t

+ 𝑠𝑠𝑠𝑠�̃�𝜔(𝑡𝑡𝑘𝑘−1)
𝑐𝑐(𝜃𝜃(𝑡𝑡𝑘𝑘−1))

{𝑠𝑠(𝜙𝜙(𝑡𝑡𝑘𝑘−1)) ∙ (�̃�𝜔𝑧𝑧(𝑡𝑡𝑘𝑘) − 𝑏𝑏�̃�𝜔𝑧𝑧(𝑡𝑡𝑘𝑘−1))} ∆t 
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where ∆t is the sampling period, and the gyro sensor is a digital gyro sensor that outputs the 
angular velocity at time 𝑡𝑡𝑘𝑘. 

 
2.3 CSGPS/DR Integrated System for High-precision Trajectory Estimation 
 

The carrier smoothed GPS/DR integrated navigation system combines a carrier smoothed 
GPS technique that provides precise trajectory and a DR technique that provides a position 
solution that guarantees continuity for a short time. It can provide more precise trajectory using 
the advantage of each system even in case of cycle slip or the change in visible satellites, 
compared to the single use of each system. 

To combine each system, they need to be designed so that the models of each system are 
related to each other. The carrier smoothed GPS/DR system assumes a two-dimensional plane, 
and thus the roll axis and the pitch axis were not considered. Using the bias error (δ𝑏𝑏�̃�𝜔𝑐𝑐𝑧𝑧) and 
conversion factor error (δ𝑠𝑠𝑠𝑠�̃�𝜔) of the gyro that corresponds to the yaw axis, the conversion factor 
error of the odometer (δ𝑠𝑠𝑠𝑠𝑜𝑜), and the error of the attitude angle (δψ), the DR error model was 
derived as follows. 
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 δψ(k + 1)
δ𝑠𝑠𝑠𝑠�̃�𝜔(k + 1)
δ𝑏𝑏�̃�𝜔𝑐𝑐𝑧𝑧(k + 1)
δ𝑠𝑠𝑠𝑠𝑜𝑜(k + 1) ]
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factor of the gyro. 

Fig. 2 shows the structure of the loosely coupled carrier smoothed GPS/DR integrated filter 
proposed in this study. 

Using the first Kalman filter, the error correction and velocity correction for the DR sensor 
are performed. Then, although the bias included in the position solution of the carrier smoothed 
GPS changes due to the change in the number of visible satellites, more accurate sensor 
correction can be performed because the DR sensor is corrected using the GPS carrier velocity 

) and 

conversion factor error (

which are the outputs of the gyro sensor, and 𝑏𝑏�̃�𝜔𝑥𝑥, 𝑏𝑏�̃�𝜔𝑦𝑦, 𝑏𝑏�̃�𝜔𝑧𝑧  are the biases of the gyro sensor 
outputs. If it is assumed that the bias of the each axis of the gyro sensor and the gyro sensor 
conversion factor are constant during the sampling period for the implementation of a system, 
the climbing angle and the attitude angle can be obtained as follows. 
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𝜓𝜓(𝑡𝑡𝑘𝑘) ≅ 𝜓𝜓(𝑡𝑡𝑘𝑘−1) + 𝑠𝑠𝑠𝑠�̃�𝜔(𝑡𝑡𝑘𝑘−1)
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(𝑡𝑡𝑘𝑘−1) {𝑐𝑐(𝜙𝜙(𝑡𝑡𝑘𝑘−1)) ∙ (�̃�𝜔𝑦𝑦(𝑡𝑡𝑘𝑘) − 𝑏𝑏�̃�𝜔𝑦𝑦(𝑡𝑡𝑘𝑘−1))} ∆t
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factor of the gyro. 

Fig. 2 shows the structure of the loosely coupled carrier smoothed GPS/DR integrated filter 
proposed in this study. 

Using the first Kalman filter, the error correction and velocity correction for the DR sensor 
are performed. Then, although the bias included in the position solution of the carrier smoothed 
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correction can be performed because the DR sensor is corrected using the GPS carrier velocity 

) of the gyro that corresponds 

to the yaw axis, the conversion factor error of the odometer 

(

which are the outputs of the gyro sensor, and 𝑏𝑏�̃�𝜔𝑥𝑥, 𝑏𝑏�̃�𝜔𝑦𝑦, 𝑏𝑏�̃�𝜔𝑧𝑧  are the biases of the gyro sensor 
outputs. If it is assumed that the bias of the each axis of the gyro sensor and the gyro sensor 
conversion factor are constant during the sampling period for the implementation of a system, 
the climbing angle and the attitude angle can be obtained as follows. 
 

𝜃𝜃(𝑡𝑡𝑘𝑘) ≅ 𝜃𝜃(𝑡𝑡𝑘𝑘−1) + 𝑠𝑠𝑠𝑠�̃�𝜔(𝑡𝑡𝑘𝑘−1) {𝑐𝑐(𝜙𝜙(𝑡𝑡𝑘𝑘−1)) ∙ (�̃�𝜔𝑦𝑦(𝑡𝑡𝑘𝑘) − 𝑏𝑏�̃�𝜔𝑦𝑦(𝑡𝑡𝑘𝑘−1))} ∆t

− 𝑠𝑠𝑠𝑠�̃�𝜔(𝑡𝑡𝑘𝑘−1) {𝑠𝑠(𝜙𝜙(𝑡𝑡𝑘𝑘−1)) ∙ (�̃�𝜔𝑧𝑧(𝑡𝑡𝑘𝑘) − 𝑏𝑏�̃�𝜔𝑧𝑧(𝑡𝑡𝑘𝑘−1))} ∆t 

 
 

(20) 

𝜓𝜓(𝑡𝑡𝑘𝑘) ≅ 𝜓𝜓(𝑡𝑡𝑘𝑘−1) + 𝑠𝑠𝑠𝑠�̃�𝜔(𝑡𝑡𝑘𝑘−1)
𝑐𝑐(𝜃𝜃(𝑡𝑡𝑘𝑘−1))

(𝑡𝑡𝑘𝑘−1) {𝑐𝑐(𝜙𝜙(𝑡𝑡𝑘𝑘−1)) ∙ (�̃�𝜔𝑦𝑦(𝑡𝑡𝑘𝑘) − 𝑏𝑏�̃�𝜔𝑦𝑦(𝑡𝑡𝑘𝑘−1))} ∆t

+ 𝑠𝑠𝑠𝑠�̃�𝜔(𝑡𝑡𝑘𝑘−1)
𝑐𝑐(𝜃𝜃(𝑡𝑡𝑘𝑘−1))

{𝑠𝑠(𝜙𝜙(𝑡𝑡𝑘𝑘−1)) ∙ (�̃�𝜔𝑧𝑧(𝑡𝑡𝑘𝑘) − 𝑏𝑏�̃�𝜔𝑧𝑧(𝑡𝑡𝑘𝑘−1))} ∆t 

 
 

(21) 
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where ∆t is the sampling period, and the gyro sensor is a digital gyro sensor that outputs the 
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2.3 CSGPS/DR Integrated System for High-precision Trajectory Estimation 
 

The carrier smoothed GPS/DR integrated navigation system combines a carrier smoothed 
GPS technique that provides precise trajectory and a DR technique that provides a position 
solution that guarantees continuity for a short time. It can provide more precise trajectory using 
the advantage of each system even in case of cycle slip or the change in visible satellites, 
compared to the single use of each system. 

To combine each system, they need to be designed so that the models of each system are 
related to each other. The carrier smoothed GPS/DR system assumes a two-dimensional plane, 
and thus the roll axis and the pitch axis were not considered. Using the bias error (δ𝑏𝑏�̃�𝜔𝑐𝑐𝑧𝑧) and 
conversion factor error (δ𝑠𝑠𝑠𝑠�̃�𝜔) of the gyro that corresponds to the yaw axis, the conversion factor 
error of the odometer (δ𝑠𝑠𝑠𝑠𝑜𝑜), and the error of the attitude angle (δψ), the DR error model was 
derived as follows. 

 

 

[
 
 
 δψ(k + 1)
δ𝑠𝑠𝑠𝑠�̃�𝜔(k + 1)
δ𝑏𝑏�̃�𝜔𝑐𝑐𝑧𝑧(k + 1)
δ𝑠𝑠𝑠𝑠𝑜𝑜(k + 1) ]

 
 
 
= [

1 𝜔𝜔𝑐𝑐𝑧𝑧(𝑘𝑘)∆𝑡𝑡 −𝑠𝑠𝑠𝑠𝑜𝑜(𝑘𝑘) ∙ ∆𝑡𝑡 0
0 1 0 0
0 0 1 0
0 0 0 1

]
[
 
 
 δψ(k)
δ𝑠𝑠𝑠𝑠�̃�𝜔(k)
δ𝑏𝑏�̃�𝜔𝑐𝑐𝑧𝑧(k)
δ𝑠𝑠𝑠𝑠𝑜𝑜(k) ]

 
 
 
+

[
 
 
 
 𝑤𝑤ψ(𝑘𝑘)
𝑤𝑤𝑠𝑠𝑠𝑠�̃�𝜔(𝑘𝑘)
𝑤𝑤𝑏𝑏�̃�𝜔𝑐𝑐𝑧𝑧

(𝑘𝑘)
𝑤𝑤𝑠𝑠𝑠𝑠𝑜𝑜(𝑘𝑘) ]

 
 
 
 
 (22) 

 
where 𝜔𝜔𝑐𝑐𝑧𝑧 = �̃�𝜔𝑐𝑐𝑧𝑧 − 𝑏𝑏𝜔𝜔𝑐𝑐𝑧𝑧 is the output of the gyro with the correction of the installation error, �̃�𝜔𝑐𝑐𝑧𝑧 
is the angular velocity including bias, 𝑏𝑏𝜔𝜔𝑐𝑐𝑧𝑧 is the bias included in �̃�𝜔𝑐𝑐𝑧𝑧, and 𝑠𝑠𝑠𝑠�̃�𝜔 is the conversion 
factor of the gyro. 
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proposed in this study. 
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are performed. Then, although the bias included in the position solution of the carrier smoothed 
GPS changes due to the change in the number of visible satellites, more accurate sensor 
correction can be performed because the DR sensor is corrected using the GPS carrier velocity 
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In Eq. (23), dx(k) and dy(k) represent the difference 

between the output position of the product for comparison 

and the output position of the reference product, and r(k) 

Fig. 2. Structure of the CSGPS/DR integrated Kalman filter.
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represents the distance between the output position of 

the product for comparison and the output position of 

the reference product. In Eq. (24), dr(k) represents the 

trajectory error, and the trajectory precision can be obtained 

by calculating the standard deviation of the trajectory error.

3.1 Performance Comparison in a Stationary State

To verify the performance of the CSGPS/DR integrated 

system in a stationary state, an experiment was performed 

on the rooftop of a building in Chungnam National 

University. In the corresponding experiment, data were 

obtained for about 30 minutes at a spot in a stationary state. 

As the actual trajectory did not change in a stationary state, 

comparison was made based on the initial position of the 

CSGPS/DR integrated system.

Fig. 3 shows the trajectory errors in a stationary state. 

As shown in this figure, the trajectory precision of the 

CSGPS/DR integrated system was 4.38 cm, and the error 

performance was less than 30 cm.

3.2 Performance Comparison in a Straight Section

To compare the performances of the code-based GPS 

and the CSGPS/DR integrated system in a straight path, 

an experiment was performed on a test track in the Korea 

Automotive Technology Institute located in Cheonan. The 

corresponding test track has a minimum altitude of 42 M 

and a maximum altitude of 48 M. The experiment consisted 

of straight driving from the right lower spot to the left upper 

spot, and the experiment was performed at 30 km/h, 60 km/

h, and 80 km/h, respectively. Fig. 4 shows the straight test 

track and trajectory.

Fig. 5 shows the trajectory errors when driving straight 

at about 30km/h. In this case, the trajectory precision of 

the code-based GPS was 63.47 cm, and that of the CSGPS 

integrated navigation system was 8.62 cm.

Fig. 6 shows the trajectory errors when driving straight 

at about 60km/h. In the case, the trajectory precision of 

the code-based GPS was 51.42 cm, and that of the CSGPS 

integrated navigation system was 1.78 cm.

Lastly, Fig. 7 shows the trajectory errors when driving 

straight at about 80km/h. In this case, the trajectory 

precision of the code-based GPS was 49.30 cm, and that 

of the CSGPS integrated navigation system was 1.66 cm. 

In other words, the trajectory precision of the code-based 

GPS was more than 30 cm regardless of the speed, while 

that of the CSGPS/DR integrated system was less than 10 

cm. Therefore, it was found that the CSGPS/DR integrated 

system was more precise.

3.3 Performance Comparison in a Path with Curved Sections

To compare the performances of the code-based GPS 

and the CSGPS/DR integrated system in a curved path, 

Fig. 3. Comparison of the trajectory errors in a stationary state.
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Fig. 4. Straight test track and trajectory.

Fig. 5. Comparison of the trajectory errors when driving straight at about 
30 km/h.
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an experiment was performed on a test track in the Korea 

Automotive Technology Institute. The corresponding 

test  t rack has  a  minimum alt i tude of  48  M and a 

maximum altitude of 50 M. The experiment consisted of 

counterclockwise driving from the left lower spot. Fig. 8 

shows the test track and trajectory with curved sections

Fig. 9 shows the trajectory errors when driving on a path 

with curved sections. In this case, the trajectory precision of 

the code-based GPS was 109.90 cm, and that of the CSGPS 

integrated navigation system was 5.34 cm. In other words, 

the trajectory precision of the code-based GPS was also 

more than 30 cm, while that of the CSGPS/DR integrated 

system was less than 10 cm. Therefore, it was found that the 

CSGPS/DR integrated system was more precise.

4. CONCLUSIONS

In this study, a navigation system that combined a carrier 

smoothed GPS technique using a low-cost GPS receiver and 

DR using a low-cost inertial sensor was proposed. Problems 

for the actual application of the carrier smoothed GPS and 

the DR were presented, respectively; and to resolve these, 

a CSGPS/DR integrated navigation system was proposed. 

In particular, in the case of the carrier smoothed GPS, the 

bias included in a position solution could change due to the 

change in visible satellites or cycle slip. Thus, using a DR 

navigation solution, it was designed so that continuity could 

be guaranteed in case of the change in the bias. The results 

of the experiment showed that the trajectory precision of 

the code-based GPS was more than 30 cm and that of the 

CSGPS/DR integrated system was less than 10 cm. Based on 

this, it was found that the CSGPS/DR integrated system has 

superior performance. Therefore, the proposed CSGPS/DR 

integrated system for high-precision trajectory estimation 

Fig. 6. Comparison of the trajectory errors when driving straight at about 
60 km/h.
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Fig. 8. Test track and trajectory with curved sections.

Fig. 7. Comparison of the trajectory errors when driving straight at about 
80 km/h.
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Fig. 9. Comparison of the trajectory errors when driving on a path with 
curved sections.
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could be applied as the ADAS of autonomous vehicles or 

as a lane keeping system (e.g., lateral control) if the initial 

bias error is eliminated using an additional method such 

as image information. In the future, studies on a three-

dimensional model need to be performed.
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