• Title/Summary/Keyword: low water potential

Search Result 817, Processing Time 0.03 seconds

The Influence of Marine Environmental Factor on the Corrosion Fatigue Fracture of SS41 Steel (SS41강의 부식피로파양에 미치는 해양환경인자의 영향)

  • 김원영;임종문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.51-58
    • /
    • 1991
  • Corrosion fatigue test was performed by the use of plane bending fatigue tester in marine environment having various specific resistance from 25(natural sea water) to 5000.ohm.cm. It is in order to investigate the effects of marine environmental factor on the corrosion fatigue fracture of SS41 steel. The main results obtained are as follows; 1. The aspect ratio(b/a) of corner crack growing in natural sea water is lower than that in air. 2. The surface crack growth rate(da/dN) in marine environment is faster than that in air and da/dN delaies with the specific resistance increased. 3. The experimental constant m of paris rule [da/dN=C(${\delta}$K)$^m$] decrease with the specific resistance decreased and the effect of corrosion in proportion to the specific resistance is more sensitive than that of stress intensity factor range(${\delta}$K) under region II. 4. The accelerative factor(${\alpha}$) in marine environment is about 1.1-2.7 and .alpha. is increase under the low region of stress intensity factor range(${\delta}$K). 5. The electrode potential($E_0$) gets less noble potential with the specific resistance decreased.

  • PDF

Research Trends and Prospects of Reverse Electrodialysis Membranes (역전기투석용 이온교환막의 연구동향 및 전망)

  • Hwang, Jin Pyo;Lee, Chang Hyun;Jeong, Yeon Tae
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.109-120
    • /
    • 2017
  • The reverse electrodialysis (RED) is an energy generation system to convert chemical potential of saline water directly into electric energy via the combination of current derived from a redox couple electrolyte and ionic potential obtained when cation ($Na^+$) and anion ($Cl^-$) pass through cation exchange membrane (CEM) and anion exchange membrane (AEM) into fresh water, respectively. Ion exchange membrane, a key element of RED system, should satisfy requirements such as 1) low swelling behavior, 2) a certain level of ion exchange capacity, 3) high ion conductivity, and 4) high perm-selectivity to achieve high power density. In this paper, research trends and prospects of ionomer materials and ion exchange membranes are dealt with.

In vitro Anticancer Activity of Paclitaxel Incorporated in Low-melting Solid Lipid Nanoparticles

  • Lee, Mi-Kyung;Yang, Jae-Heon
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.3
    • /
    • pp.201-205
    • /
    • 2009
  • Triglyceride solid lipid with medium chain fatty acid, tricaprin (TC), was used as a core matrix of lipid nanoparticles (LN) to solubilize water-insoluble paclitaxel and enhance the stability of nanoparticles by immobilization of incorporated drug in the solid core during storage at low temperature. In the present study, TC-LN containing paclitaxel was prepared by hot melt homogenization method using TC as a core lipid and phospholipids as stabilizers. The particle size of TC-LN containing paclitaxel was less than 200 nm and its zeta potential was around -40 mV. Calorimetric analysis showed TC core could be solidified by freezing and thawing in the manufacturing process in which the hot dispersion should be prepared at elevated temperature and subsequently cooled to obtain solid lipid nanoparticles. The melting transition of TC core was observed at $27.5^{\circ}C$, which was lower than melting point of TC bulk. The particle size of TC-LN remained unchanged when kept at $4^{\circ}C$. Paclitaxel containing TC-LN showed comparable anticancer activity to the Cremophore ELbased paclitaxel formulation against human ovarian (OVCAR-3) and breast (MCF-7) cancer cell lines. Thus, lipid nanoparticles with medium chain solid lipid may have a potential as alternative delivery system for parenteral administration of paclitaxel.

Cempedak Durian (Artocarpus sp.) Peel as a Biosorbent for the Removal of Toxic Methyl Violet 2B from Aqueous Solution

  • Dahri, Muhammad Khairud;Chieng, Hei Ing;Lim, Linda B.L.;Priyantha, Namal;Mei, Chan Chin
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.576-583
    • /
    • 2015
  • This paper aims to investigate the potential use of cempedak durian peel (CDP) from Negara Brunei Darussalam, which is low-cost, locally available, eco-friendly and highly efficient to remove methyl violet (MV) dye from aqueous solutions. The time required for equilibrium to be reached is 2.0 h with no adjustment of pH necessary. FTIR analysis was indicative of the involvement of -COOH and C=O functional groups in adsorption process. The Langmuir model provided the best fit with maximum adsorption capacity of $0.606mmol\;g^{-1}$. Thermodynamics data indicate that the adsorption is spontaneous, feasible and endothermic in nature. Best regeneration of CDP's adsorption ability is achieved by base solution, showing about 95% removal efficiency of MV even after 5 cycles, indicating that CDP can be regenerated and reused. This, together with its high adsorption capacity, makes CDP a potential adsorbent for the removal of MV in wastewater.

A Meta-Analysis for the Impact of Transgenic Crop Adoption on Corn and Soybean Yield

  • Lee, Sang-Hoon;Lee, Gyeong-Bo;Hwang, Seon-Woong;Kim, Hye-Jin;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.614-621
    • /
    • 2012
  • Although there is a broad dispute over genetically modified foods on safety, the worldwide adoption of transgenic crops is rapidly increasing. The objectives of this study were to identify trends in the effects of transgenic on crop yields and examine the effect of agricultural variables including crop type, biotech trait, tillage system, and yield environment on corn and soybean yield. A meta-analysis from the 34 peer-reviewed scientific literatures was conducted to compare the crop yield between transgenic crops and conventional varieties. Results showed that the yield of transgenic corn and soybean was strongly dependent on growing conditions. Transgenic hybrids had higher yield potential in the low crop yield environments such as high weeds and/or insect infestation, low soil water, and cool temperature conditions, while transgenic crops did not have yield advantages in high yield environments. The results from this study suggest that producers should consider the potential yield environmental conditions and possible yield reductions when producers choose crop hybrids in their fields.

A Study on the Ecological Attributes Assessment and Comparison of Urban Parks according to Types of the Surrounding Green Areas (주변녹지 여부에 따른 도시공원의 생태성 평가와 비교에 관한 연구)

  • Sung, Hyun-Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.2
    • /
    • pp.119-131
    • /
    • 2015
  • The purpose of this study was to compare the differences of the ecological attributes in the two types of urban park at Suwon and Goyang city. 'Directly linked park' is forests and rivers in the vicinity, it is capable of re-supply of the species and 'Isolated park' is forests and rivers apart, it is a difficult re-supply of the species. The result of assessment of the ecological attributes in the two types of urban park was analyzed as the percentage of 'Forest zone' was high, but the percentage of 'Area of permeable pavement' and 'Bush area' was low. 'The planting structure' was mostly 1-layer structure(47%) and 'Foreign tree species' is high by half the proportion. 'Age classes' were a 2-3age classes level, and 'Water body' could barely. Thus, ecological attributes degree was very low. In addition, results of investigation whether the difference of ecological attributes degree between the two types of urban park, also statistically analyzed that there is no difference. Therefore, when establishing the composition of the future plans of the city park, to take full account of the ecological situation in the surrounding parkland, and identify the ecological potential with the parkland. Next, it should be designed and planned of the park that fully utilizing the potential of this ecological attributes.

Anti-diabetic Effects of Mixed Water Extract from Ginseng Radix Rubra, Acanthopanacis Cortex, and Cordyceps (홍삼.가시오가피.동충하초 혼합수엑스의 항당뇨작용)

  • Ko, Sung-Kwon;Kim, Jae-Soo;Choi, Yong-Eui;Lee, Seung-Jung;Park, Kyeong-Soo;Chung, Sung-Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.33 no.4 s.131
    • /
    • pp.337-342
    • /
    • 2002
  • The effect of water extract composed of panax ginseng radix rubra, acanthopanacis cortex, and cordyceps (PAC) on diabetic animal models were investigated in two different diabetic animal models. FAC water extract significantly reduced the plasma glucose levels on day 30 as compared with the diabetic control group in $KKA^Y$ obese, hyperglycemic and hyperglycemic and hyperinsulinemic mice, and also reduced the plasma glucose levels as well as total cholesterol in multiple low dose (MLD) strep tozotocin-induced diabetic SD rats. PAC water extract also showed an inhibitory effect on reduction of body weight and on development of MLD STZ-induced diabetic state. Elevated kidney hypertrophy, which is a characteristic feature shown in early stage of diabetic nephropathy and calculated as the ratio of kidney mass (g) relative to the body weight (g), was also markedly improved in PAC water extract- treated group as compared to the diabetic control group. Taken together, these data suggest that PAC water extract may have a potential as a antidiabetic agent in type 2 diabetes mellitus.

Effects of coagulation-UF pretreatment on pressure retarded osmosis membrane process (응집-UF 전처리 공정이 압력지연삼투 공정에 미치는 영향)

  • Goh, Gilhyun;Kim, Suhyun;Kim, Jungsun;Kang, Limseok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.4
    • /
    • pp.285-292
    • /
    • 2021
  • Osmotic power is to produce electric power by using the chemical potential of two flows with the difference of salinity. Water permeates through a semipermeable membrane from a low concentration feed solution to a high concentration draw solution due to osmotic pressure. In a pressure retarded osmosis (PRO) process, river water and wastewater are commonly used as low salinity feed solution, whereas seawater and brine from the SWRO plant are employed as draw solution. During the PRO process using wastewater effluent as feed solution, PRO membrane fouling is usually caused by the convective or diffusive transport of PRO which is the most critical step of PRO membrane in order to prevent membrane fouling. The main objective of this study is to assess the PRO membrane fouling reduction by pretreatment to remove organic matter using coagulation-UF membrane process. The experimental results obtained from the pretreatment test showed that the optimum ferric chloride and PAC dosage for removal of organic matter applied for the coagulation and adsorption process was 50 mg/L as FeCl3 (optimum pH 5.5). Coagulation-UF pretreatment process was higher removal efficiency of organic matter, as also resulting in the substantial improvement of water flux of PRO membrane.

A Study on the Deck Wetness of the FPSO (원유 생산.저장.하역선의 갑판침수에 관한 연구)

  • 임춘규;이호영
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.1
    • /
    • pp.8-14
    • /
    • 2004
  • As the number of offshore structure is glowing in deep waters, there have been increased damages of it. These floating structures in offshore locations exposed to harsh environmental conditions. In recent years, there has been a slowing attention around damages on bow and deck on FPSO caused by waves in steep storm condition. This paper describes a study of the water on deck due to the dynamic behavior of a FPSO with turret mooring system. The nonlinear motions of the FPSO are simulated under external forces due to wave, current, wind, and mooring forces in the time domain. The direct integration method is employed to estimate low frequency drift wave forces. The current forces are calculated by using slow motion maneuvering equations in the horizontal plane. The coefficients of a model for wind forces are calculated from Isherwood's experimental data and the variation of wind speed is estimated by wind spectrum according to the guidelines of API-RP2A.

Low Temperature PECVD for SiOx Thin Film Encapsulation

  • Ahn, Hyung June;Yong, Sang Heon;Kim, Sun Jung;Lee, Changmin;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.198.1-198.1
    • /
    • 2016
  • Organic light-emitting diode (OLED) displays have promising potential to replace liquid crystal displays (LCDs) due to their advantages of low power consumption, fast response time, broad viewing angle and flexibility. Organic light emitting materials are vulnerable to moisture and oxygen, so inorganic thin films are required for barrier substrates and encapsulations.[1-2]. In this work, the silicon-based inorganic thin films are deposited on plastic substrates by plasma-enhanced chemical vapor deposition (PECVD) at low temperature. It is necessary to deposit thin film at low temperature. Because the heat gives damage to flexible plastic substrates. As one of the transparent diffusion barrier materials, silicon oxides have been investigated. $SiO_x$ have less toxic, so it is one of the more widely examined materials as a diffusion barrier in addition to the dielectric materials in solid-state electronics [3-4]. The $SiO_x$ thin films are deposited by a PECVD process in low temperature below $100^{\circ}C$. Water vapor transmission rate (WVTR) was determined by a calcium resistance test, and the rate less than $10.^{-2}g/m^2{\cdot}day$ was achieved. And then, flexibility of the film was also evaluated.

  • PDF