• Title/Summary/Keyword: low velocity impact energy

Search Result 128, Processing Time 0.027 seconds

A Study on the Vibration Effect by Dynamic Compaction Method at Waste Landfill (폐기물 매립지반에서 동다짐공법에 의한 진도영향에 관한 연구)

  • Chun, Byung-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.141-148
    • /
    • 2001
  • Dynamic compaction is the ground improvement method by applying the impact energy. This impact energy can damage to adjacent structure in urban area. Therefore, if dynamic compaction method is applied, careful attention should be payed to surrounded structures. In this study, the method was performed in waste landfill and the frequency of vibrations were measured according to each distances, drop-heights, and vibrating directions. The measured data show that particle velocity bas low frequency and it is greatest in longitudinal direction. There was little differences between Maynes suggestion and measured data. Therefore, Maynes suggestion can be adopted if the range of vibration can be predicted. Also, It was found that minimum 45m distance is needed in order to satisfy the administrative code if dynamic compaction method is applied.

  • PDF

Experimental Investigation on the Behaviour of CFRP Laminated Composites under Impact and Compression After Impact (CAI) (충격시 CFRP 복합재 판의 거동과 충격후 압축강도에 관한 실험적 연구)

  • Lee, J;Kong, C;Soutis C.
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.66-73
    • /
    • 2003
  • The importance of understanding the response of structural composites to impact and CAI cannot be overstated to develop analytical models for impact damage and CAI strength predictions. This paper presents experimental findings observed from quasi-static lateral load tests, low velocity impact tests. CAI strength and open hole compressive strength tests using 3 mm thick composite plates($[45/-45/0/90]_{3s}$- IM7/8552). The conclusion is drawn that damage areas for both quasi-static lateral load and impact tests are similar and the curves of several drop weight impacts with varying energy levels(between 5.4 J and 18.7 J) follow the static curve well. In addition, at a given energy the peak force is in good agreement between the static and impact cases. It is identified that the failure behaviour of the specimens from the CAI strength tests was very similar to that observed in laminated plates with open holes under compression loading. The residual strengths art: in good agreement with the measured open hole compressive strengths. considering the impact damage site area, an equivalent hole. The experimental findings suggest that simple analytical models for the prediction of impact damage area and CAI strength can be developed on the basis of the failure mechanism observed from the experimental tests.

Repeated impact response of bio-inspired sandwich beam with arched and honeycomb bilayer core

  • Ahmad B.H. Kueh;Juin-Hwee Tan;Shukur Abu Hassan;Mat Uzir Wahit
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.755-764
    • /
    • 2023
  • The article examines the impact response of the sandwich beam furnished by a novel bilayer core as inspired by the woodpecker's head architecture under different repeatedly exerted low-velocity impact loadings by employing the finite element package, ABAQUS. The sandwich beam forms four essential parts comprising bottom and top carbon fiber reinforced polymer laminates encasing bilayer core made of laterally arched solid hot melt adhesive material and aluminum honeycomb. Impact loadings are implemented repeatedly with a steel hemisphere impactor for various impact energies, 7.28 J, 9.74 J, and 12.63 J. Essentially, the commonly concentrated stresses at the impact region are regulated away by the arched core in all considered cases thus reducing the threat of failure. The sandwich beam can resist up to 5 continual impacts at 7.28 J and 9.74 J but only up to 3 times repeated loads at 12.63 J before visible failure is noticed. In the examination of several key impact performance indicators under numerous loading cases, the proposed beam demonstrates favorably up to 1.3-11.2 higher impact resistance efficacies compared to existing designs, therefore displaying an improvement in repeated impact resistance of the new design.

Prediction of Pulse Pressure and Pulse Interval of Change in Operation Conditions of a Pulse Air Jet Bag Filter (충격기류식 여과집진장치의 운전조건 변화에 따른 적정 탈진주기 및 탈진압력 설정)

  • Lee, Deok-Gi;Lim, Woo-Taik;Cho, Jae-Hwan;Choi, Kum-Chan;Shin, Hyun-Moo;Jang, Seong-Ho;Suh, Jeong-Min
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.349-358
    • /
    • 2018
  • In this study, using coke dust from ironwork, the pulse pressure on a pulse air jet bag filter was investigated considering the influence of the pressure loss due to filtration velocity and pressure intervals. The research on the optimal pulse pressure prediction of a pulse air jet type bag filter using coke dust showed the following results. Pressure loss volatility produced by the pulse pressure under low dust concentration(0.5, $1g/m^3$) and low face velocity(1.25 m/min) was less than $10mmH_2O$. This suggests that the pulse pressure has a low impact on the pressure loss. In contrast, pressure loss volatility under high dust concentration($3g/m^3$) and high face velocity(1.75 m/min) was $25mmH_2O$. Therefore, pulse pressure with high dust concentration and high face velocity has a strong influence on the pressure loss volatility, compared to the condition of low dust concentration and low face velocity. The optimal pulse pressure of inlet dust concentration($0.5g/m^3$) was $6kg/cm^2$ under the same face velocity(1.75 m/min). As concentration increased from 1 to $2g/m^3$, the pulse pressure gradually reached $5kg/cm^2$ thus indicating that the pulse pressure($5kg/cm^2$) is pertinent at a high concentration($3g/m^3$). The pulse intervals: 20, 25 and 30 sec, which are relatively longer than 10 and 15 sec, corresponded to high pressure loss volatility produced by the pulse pressure. Furthermore, low pressure loss volatility was noted at $5kg/cm^2$ of the overall pulse pressure.

Flexural and Punching Behaviors of Concrete Strengthening with FRP Sheets and Steel Fibers under Low-Velocity Impact Loading (FRP 시트 및 강섬유 보강 콘크리트의 저속 충격에서의 휨 및 펀칭 파괴 거동)

  • Min, Kyung-Hwan;Shin, Hyun-Oh;Yoo, Doo-Yeol;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.31-38
    • /
    • 2011
  • In this study, in order to observe the behaviors of fiber reinforced polymer (FRP) strengthened and steel fiber reinforced concrete specimens for impact and static loads, flexural and punching tests were performed. For the one-way flexural and two-way punching tests, concrete specimens with the dimensions of $50{\times}100{\times}350$ mm and $50{\times}350{\times}350$ mm were fabricated, respectively. The steel fiber reinforced concrete specimens showed much enhanced resistance on two-way punching of static and impact loads. In addition the FRP strengthening system provided the outstanding performance under a punching load. Because of a large tensile strength and toughness of ultra high performance concrete (UHPC), the UHPC specimens retrofitted with FRP showed marginally enhanced strength and energy dissipating capacity.

Experimental investigation of impact behaviour of shear deficient RC beam to column connection

  • Murat, Aras;Tolga, Yilmaz;Ozlem, Caliskan;Ozgur, Anil;R. Tugrul, Erdem;Turgut, Kaya
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.619-632
    • /
    • 2022
  • Reinforced concrete (RC) structures may be subjected to sudden dynamic impact loads such as explosions occurring for different reasons, the collision of masses driven by rockfall, flood, landslide, and avalanche effect structural members, the crash of vehicles to the highway and seaway structures. Many analytical, numerical, and experimental studies focused on the behavior of RC structural elements such as columns, beams, and slabs under sudden dynamic impact loads. However, there is no comprehensive study on the behavior of the RC column-beam connections under the effect of sudden dynamic impact loads. For this purpose, an experimental study was performed to investigate the behavior of RC column-beam connections under the effect of low-velocity impact loads. Sixteen RC beam-column connections with a scale of 1/3 were manufactured and tested under impact load using the drop-weight test setup. The concrete compressive strength, shear reinforcement spacing in the beam, and input impact energy applied to test specimens were taken as experimental variables. The time histories of impact load acting on test specimens, accelerations, and displacements measured from the test specimens were recorded in experiments. Besides, shear and bending crack widths were measured. The effect of experimental variables on the impact behavior of RC beam-column connections has been determined and interpreted in detail. Besides, a finite element model has been established for verification and comparison of the experimental results by using ABAQUS software. It has been demonstrated that concrete strength, shear reinforcement ratio, and impact energy significantly affect the impact behavior of RC column-beam connections.

Monitoring of Low-velocity Impact Damage Initiation of Gr/Ep Panel 7sing Piezoeleetric Thin Film Sensor (압전필름센서를 이용한 복합재 평판의 저속충격 손상개시 모니터링)

  • 박찬익;김인걸;이영신
    • Composites Research
    • /
    • v.15 no.2
    • /
    • pp.11-17
    • /
    • 2002
  • The piezoelectric thin film sensor can be used to interpret variations in structural and material properties, e.g. for structural integrity monitoring and assessment. To illustrate one of this potential benefit, PVDF (polyvinylidene fluoride) film sensors are used for monitoring impact damage in Gr/Ep composite panels. Both PVDF film sensors and strain gages are attached to the surface of Gr/Ep specimens. A series of impact tests at various impact energy by changing impact mass the height are performed on the instrumented drop weight impact tester. The sensor responses are carefully examined to predict the onset of impact damage such as indentation, matrix cracking, and delamination, etc. Test results show that the particular waveforms of sensor signals implying the damage initiation and development are detected above the damage initiation impact energy. As expected, the PVDF film sensor is found to be more sensitive to impact damage initiation event than the strain gage.

Fracture Toughness and AE Behavior of Impact-Damaged CFRP (탄소섬유복합재료의 충격 손상에 따른 파괴 인성과 AE 특성)

  • Lee, S.G.;Nam, K.W.;Oh, S.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.2
    • /
    • pp.81-88
    • /
    • 1997
  • Impact behavior of carbon fiber reinforced plastics (CFRP) laminates were evaluated with tension test and compact tension test. A steel ball launched by an air gun collides against CFRP laminates to generate impact damage of relatively low energy. The static tensile and fracture toughness tests were performed to evaluate the residual strength and the AE behavior of impact-damaged laminates. As a results, it was found that the static strength, the fracture toughness and the AE-event count were decreased with increasing of impact velocity and delamination area, and to have a different strength ratio and fracture toughness ratio for each stacking method. And also, it was confirmed that strength and fracture toughness of impact-damaged CFRP laminates could be evaluated and analyzed quantitatively by AE techniques.

  • PDF

EFFECTIVE REINFORCEMENT OF S-SHAPED FRONT FRAME WITH A CLOSED-HAT SECTION MEMBER FOR FRONTAL IMPACT USING HOMOGENIZATION METHOD

  • CHO Y.-B.;SUH M.-W.;SIN H.-C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.643-655
    • /
    • 2005
  • The frontal crash optimization of S-shaped closed-hat section member using the homogenization method, design of experiment (DOE) and response surface method (RSM) was studied. The optimization to effectively absorb more crash energy was studied to introduce the reinforcement design. The main focus of design was to decide the optimum size and thickness of reinforcement. In this study, the location of reinforcement was decided by homogenization method. Also, the effective size and thickness of reinforcements was studied by design of experiments and response surface method. The effects of various impact velocity for reinforcement design were researched. The high impact velocity reinforcement design showed to absorb the more crash energy than low velocities design. The effect of size and thickness of reinforcement was studied and the sensitivity of size and thickness was different according to base thickness of model. The optimum size and thickness of the reinforcement has shown a direct proportion to the thickness of base model. Also, the thicker the base model was, the effect of optimization using reinforcement was the bigger. The trend curve for effective size and thickness of reinforcement using response surface method was obtained. The predicted size and thickness of reinforcement by RSM were compared with results of DOE. The results of a specific dynamic mean crushing loads for the predicted design by RSM were shown the small difference with the predicted results by RSM and DOE. These trend curves can be used as a basic guideline to find the optimum reinforcement design for S-shaped member.

Numerical analysis of stress wave of projectile impact composite laminate

  • Zhangxin Guo;Weijing Niu;Junjie Cui;Gin Boay Chai;Yongcun Li;Xiaodong Wu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.107-116
    • /
    • 2023
  • The three-dimensional Hashin criterion and user subroutine VUMAT were used to simulate the damage in the composite layer, and the secondary stress criterion was used to simulate the interlayer failure of the cohesive element of the bonding layer and the propagation characteristics under the layer. The results showed that when the shear stress wave (shear wave) propagates on the surface of the laminate, the stress wave attenuation along the fiber strength direction is small, and thus producing a large stress profile. When the compressive stress wave (longitudinal wave) is transmitted between the layers, it is reflected immediately instead of being transmitted immediately. This phenomenon occurs only when the energy has accumulated to a certain degree between the layers. The transmission of longitudinal waves is related to the thickness and the layer orientation. Along the symmetry across the thickness direction, the greater is the stress amplitude along the layer direction. Based on the detailed investigation on the impact on various laminated composites carried out in this paper, the propagation characteristics of stress waves, the damage and the destruction of laminates can be explained from the perspective of stress waves and a reasonable layering sequence of the composite can be designed against damage and failure from low velocity impact.