• Title/Summary/Keyword: low vanadium permeability

Search Result 10, Processing Time 0.017 seconds

Preparation and Electrochemical Applications of Pore-filled Ion-exchange Membranes with Well-adjusted Cross-linking Degrees: Part I. All Vanadium Redox Flow Battery (가교도가 조절된 세공충진 이온교환막의 제조 및 전기화학적 응용: Part I. 전 바나듐 레독스 흐름전지)

  • Lee, Ji-Eun;Park, Ye-Rin;Kim, Do-Hyeong;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.406-414
    • /
    • 2017
  • In this study, we have developed pore-filled ion-exchange membranes (PFIEMs) filled with ionomer in a thin polyethylene porous film (thickness = $25{\mu}m$) and investigated the charge-discharge characteristics of the all vanadium redox flow battery (VRFB) employing them. Especially, the degree of crosslinking and free volume of the PFIEMs were appropriately controlled to produce ion-exchange membranes exhibiting both the low membrane resistance and low vanadium permeability by mixing crosslinking agents having different molecular size. As a result, the prepared PFIEMs exhibited excellent electrochemical properties which are comparable to those of the commercial membranes. Also, it was confirmed through the experiments of vanadium ion permeability and VRFB performance evaluation that the PFIEMs showed low vanadium ion permeability and high charge-discharge efficiency in comparison with the commercial membrane despite their thin film thickness.

Recent Advance on Composite Membrane Based Vanadium Redox Flow Battery (복합막 기반 바나듐 레독스 흐름 전지의 최근 발전)

  • Kyobin Yoo;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.5
    • /
    • pp.233-239
    • /
    • 2023
  • The transport properties of membranes used in vanadium redox flow batteries (VRFB) are fundamental in battery performance. High proton conductivity and low vanadium ion permeability must be achieved to achieve high battery performance. However, there is a trade-off relationship between proton conductivity and vanadium ion permeability. So, solving this trade-off relationship is crucial in VRFB development. Also, maintaining high coulombic efficiency, voltage efficiency, and energy efficiency is essential for high-performing VRFB. Recently, various attempts have been made, primarily on composite membranes and SPEEK membranes, to overcome the existing limit of Nafion membranes. VRFB is an essential class of rechargeable battery in composite membranes reviewed here.

Research Trend of Polymeric Ion-Exchange Membrane for Vanadium Redox Flow Battery (바나듐계 레독스 흐름 전지용 고분자 이온교환막의 연구개발 동향)

  • Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.22 no.5
    • /
    • pp.285-300
    • /
    • 2012
  • Vanadium redox flow battery is believed to be one of important energy storage technologies, because it has many advantages, including long cycle life, high energy efficiency, low cost of maintenance, and environmental friendship. As one of the key components of vanadium redox flow battery system, an ion exchange membrane is required to prevent cross-mixing of the positive and negative electrolytes while allowing ionic continuity. However, ion exchange membrane such as Nafion using in VRBs still face some challenges in meeting performance and cost requirements for broad penetration. Therefore, to resolve these problems, developed various ion exchange membranes are investigated and compared with Nafion membranes in terms of their performance in vanadium redox flow battery.

Preparation of an Anion Exchange Membrane Using the Blending Polymer of Poly(ether sulfone) (PES) and Poly(phenylene sulfide sulfone) (PPSS) (폴리에테르설폰-폴리페닐렌설파이드설폰 블렌딩 고분자를 이용한 음이온교환막의 제조)

  • Lee, Kyung-Han;Han, Joo-Young;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.155-163
    • /
    • 2019
  • The anion exchange membrane using the blending polymer of poly(ether sulfone) and poly(phenylene sulfide sulfone) was prepared. It was confirmed by EDXS and FT-IR analysis that the prepared anion exchange membrane had the -N- as an anion exchange group. The ionic conductivity in 1 mol/L $H_2SO_4$ aqueous solution was measured. The ionic conductivity of the prepared anion exchange membrane was 0.015~0.083 S/cm, and had a high value compared with AFN and APS as a commercial anion exchange membrane. Permeabilities of the vanadium ions through the prepared anion exchange membrane were tested to evaluate the possibility as a separator in vanadium redox flow battery. Vanadium ion permeation rate in the prepared anion exchange membrane had a low value compared with Nafion 117 as a commercial cation exchange and AFN as a commercial anion exchange membrane.

Development of Composite Bipolar Plate for Vanadium Redox Flow Battery (바나듐 레독스 흐름 전지용 복합재료 분리판 개발)

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.148-154
    • /
    • 2021
  • Carbon/epoxy composite bipolar plate (BP) is a BP that is likely to replace existing graphite bipolar plate of vanadium redox flow cell (VRFB) due to its high mechanical properties and productivity. Multi-functional carbon/epoxy composite BP requires graphite coating or additional surface treatment to reduce interfacial contact resistance (ICR). However, the expanded graphite coating has the disadvantage of having low durability under VRFB operating conditions, and the surface treatments incur additional costs. In this work, an excessive resin absorption method is developed, which uniformly removes the resin rich area on the surface of the BP to expose carbon fibers by applying polyester fabric. This method not only reduces ICR by exposing carbon fibers to BP surfaces, but also forms a unique ditch pattern that can effectively hold carbon felt electrodes in place. The acidic environmental durability, mechanical properties, and gas permeability of the developed carbon/epoxy composite BP are experimentally verified.

Development of Thermoplastic Carbon Composite Hybrid Bipolar Plate for Vanadium Redox Flow Batteries (VRFB) (바나듐 레독스 흐름전지용 열가소성 탄소 복합재료 하이브리드 분리판 개발)

  • Jun Woo Lim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.422-428
    • /
    • 2023
  • The electrical contact resistance between the bipolar plate (BP) and the carbon felt electrode (CFE), which are in contact by the stack clamping pressure, has a great impact on the stack efficiency because of the relatively low clamping pressure of the vanadium redox flow battery (VRFB) stack. In this study, a polyethylene (PE) composite-CFE hybrid bipolar plate structure is developed through a local heat welding process to reduce such contact resistance and improve cell performance. The PE matrix of the carbon fiber composite BP is locally melted to create a direct contact structure between the carbon fibers of CFE and the carbon fibers of BP, thereby reducing the electrical contact resistance. Area specific resistance (ASR) and gas permeability are measured to evaluate the performance of the PE composite-CFE hybrid bipolar plate. In addition, an acid aging test is performed to measure stack reliability. Finally, a VFRB unit cell charge/discharge test is performed to compare and analyze the performance of the developed PE composite-CFE hybrid BP and the conventional BP.

Characterization of Commercial Membranes for Non-aqueous Vanadium Redox Flow Battery (비수계 바나듐 레독스 흐름 전지를 위한 상용 멤브레인의 특성분석)

  • Sung, Ki-Won;Shin, Sung-Hee;Moon, Seung-Hyeon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.615-621
    • /
    • 2013
  • Membrane characterization methods for aqueous redox flow batteries aqueous RFBs were modified for non-aqueous RFBs. The modified characterization methods, such as ion exchange capacity, transport number, permeability and single cell test, were carried out to evaluate commercial membranes in non-aqueous electrolyte. It was found that columbic efficiency and energy efficiency in a single cell test were dependent on the ion selectivity of commercial anion exchange membranes. Neosepta AHA anion exchange membrane showed the anion transport number of 0.81, which is a relatively low ion selectivity in non-aqueous electrolyte, however, exhibited 92% of coulombic efficiency and 86% of energy efficiency in a single cell test. It was also found that a porous membrane without ion selectivity is suitable for a non-aqueous redox flow battery at a high current density.

Iron-Chrome Crossover through Nafion Membrane in Iron-Chrome Redox Flow Battery (철-크롬 산화환원흐름전지에서 Nafion막의 철-크롬 Crossover)

  • Kim, Young-Sook;Oh, So-Hyeong;Kim, Eunbi;Kim, Dayoung;Kim, Seongji;Chu, Cheun-Ho;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.24-28
    • /
    • 2018
  • The redox flow battery (RFB) is a large-capacity energy storage equipment, and the vanadium redox flow cell is a typical RFB, but VRFB is expensive. Iron-chrome RFBs are economical because they use low-cost active materials, but their low performance is a urgent problem. In this study, the crossover of iron and chromium ion through Nafion membrane and the stability of Nafion membrane in HCl solution were investigated. The permeability of iron and chrome ion through Nafion were $5.5{\times}10^{-5}$ and $6.0{\times}10^{-5}cm^2/min$, respectively, which was 18.9~20.7 times higher than that of vanadium ion ($2.9{\times}10^{-6}cm^2/min$). The crossover of iron and chromium ions were shown to be a cause of performance decrease in Iron-chrome RFB. As the temperature increases, the crossover increases rapidly (activation energy 38.8 kJ/ mol), indicating that operation at low temperature is a methode to reduce the performance loss due to crossover. Nafion membranes were relatively stable in 3 M HCl solution.

Active Material Crossover through Sulfonated Poly (Ether Ether Ketone) Membrane in Iron-Chrome Redox Flow Battery (철-크롬 산화환원흐름전지에서 Sulfonated Poly (Ether Ether Ketone)막의 활물질 Crossover)

  • Kim, Young-Sook;Oh, So-Hyeong;Kim, You-Jeong;Kim, Seong-ji;Chu, Cheun-Ho;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.17-21
    • /
    • 2019
  • The redox flow battery (RFB) is a large-capacity energy storage equipment, and the vanadium redox flow cell is a typical RFB, but VRFB is expensive. Iron-chrome RFBs are economical because they use low-cost active materials, but their low performance is an urgent problem. One of the reasons for the low performance is the crossover of the active materials. In this study, the sulfonated Poly (ether ether ketone) (sPEEK) membrane, which is a hydrocarbon membrane, was used instead of the fluorine membrane to reduce the crossover of the active materials. The chromium ion permeability of the sPEEK membrane was $1.8{\times}10^{-6}cm^2/min$, which was about 1/33 of that of the Nafion membrane. Thus, it was shown that the use of the sPEEK membrane instead of the fluorine membrane could solve the high active material crossover problem. The activation energy of iron diffusion through the sPEEK membrane was 24.9 kJ/mol, which was about 66% of Nafion membrane. And that the e-PTFE support in the polymer membrane reduces the active material crossover through Iron-Chrome Redox Flow Battery (ICRFB).

Establishment and application of standard-RSF for trace inorganic matter mass analysis using GD-MS (GD-MS 분석 장비를 활용한 극미량 무기물 질량 분석을 위한 표준RSF 구축 및 응용)

  • Jang, MinKyung;Yang, JaeYeol;Lee, JongHyeon;Yoon, JaeSik
    • Analytical Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.240-246
    • /
    • 2018
  • The present study analyzed standard samples of three types of aluminum matrix certified reference materials (CRM) using GD-MS. Calibration curves were constructed for 13 elements (Mg, Si, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Sn, and Pb), with the slope representing the relative sensitivity factor (RSF). The x- and y-axes of the calibration curve represented ion beam ratio (IBR) and the authenticated value of the standard sample, respectively. In order to evaluate precision and linearity of the calibration curve, RSD and the coefficient of determination were calculated. Curve RSD for every element reflected high precision (within 10 %). For most elements, the coefficient of determination was ${\geq}0.99$, indicating excellent linearity. However, vanadium, nickel, and gallium curves exhibited relatively low linearity (0.90~0.95), likely due to their narrow concentration ranges. Standard RSF was calculated using the slope of the curve generated for three types of CRM. Despite vanadium, nickel, and gallium exhibiting low coefficients of determination, their standard RSF resembled that of the three types of CRM. Therefore, the RSF method may be used for element quantitation. Standard iron matrix samples were analyzed to verify the applicability of the aluminum matrix standard RSF, as well as to calculate the RSD-estimated error of the measured value relative to the actual standard value. Six elements (Al, Si, V, Cr, Mn, and Ni) exhibited an RSD of approximately 30 %, while the RSD of Cu was 77 %. In general, Cu isotopes are subject to interference: $^{63}Cu$ to $^{54}Fe^{2+}-^{36}Ar$ and $^{65}Cu$ to $^{56}Fe-Al^{3+}$ interference. Thus, the influence of these impurities may have contributed to the high RSD value observed for Cu. To reliably identify copper, the resolution should be set at ${\geq}8000$. However, high resolutions are inappropriate for analyzing trace elements, as it lowers ion permeability. In conclusion, quantitation of even relatively low amounts of six elements (Al, Si, V, Cr, Mn, and Ni) is possible using this method.