Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.3.155

Preparation of an Anion Exchange Membrane Using the Blending Polymer of Poly(ether sulfone) (PES) and Poly(phenylene sulfide sulfone) (PPSS)  

Lee, Kyung-Han (Graduate School, Department Green Energy, Hoseo University)
Han, Joo-Young (Graduate School, Department Green Energy, Hoseo University)
Ryu, Cheol-Hwi (Graduate School, Department Green Energy, Hoseo University)
Hwang, Gab-Jin (Graduate School, Department Green Energy, Hoseo University)
Publication Information
Membrane Journal / v.29, no.3, 2019 , pp. 155-163 More about this Journal
Abstract
The anion exchange membrane using the blending polymer of poly(ether sulfone) and poly(phenylene sulfide sulfone) was prepared. It was confirmed by EDXS and FT-IR analysis that the prepared anion exchange membrane had the -N- as an anion exchange group. The ionic conductivity in 1 mol/L $H_2SO_4$ aqueous solution was measured. The ionic conductivity of the prepared anion exchange membrane was 0.015~0.083 S/cm, and had a high value compared with AFN and APS as a commercial anion exchange membrane. Permeabilities of the vanadium ions through the prepared anion exchange membrane were tested to evaluate the possibility as a separator in vanadium redox flow battery. Vanadium ion permeation rate in the prepared anion exchange membrane had a low value compared with Nafion 117 as a commercial cation exchange and AFN as a commercial anion exchange membrane.
Keywords
ion exchange membrane; anion exchange membrane; ionic conductivity; redox-flow battery; vanadium permeability;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Y. Liu, S. Yang, Y. Chen, J. Liao, A. Sotto, and J. Shen, "Preparation of water-based anion exchange membrane from PVA for antifouling in the electrodialysis process", J. Membr. Sci., 570, 130 (2019).   DOI
2 G.-J. Hwang and H. Ohya, "Preparation of anion exchange membrane based on block copolymers. Part I: Amination of the chloromethylated copolymers", J. Membr. Sci., 140, 195 (1998).   DOI
3 M. Khan, C. Zheng, A. N. Mondal, Md. Masem Hossain, B. Wu, K. Emmanuel, L. Wu, and T. Xu, "Preparation of anion exchange membrane from BPPO and dimethylethanolamine for electrodialysis", Desalination, 402, 10 (2017).   DOI
4 S. Doi, M. Yasukawa, Y. Kakihana, and M. Higa, "Alkali stack on anion exchange membranes with PVC backing and binder: Effect on performance and correlation between them", J. Membr. Sci., 573, 85 (2019).   DOI
5 X. Zheng, S. Song, J. Yang, J. Wang, and L. Wang, "4-formyl dibenzo-18-crown-6 grafted polyvinyl alcohol as anion exchange membranes for fuel cell", Euro. Poly. J., 112, 581 (2019).   DOI
6 J. Liu, X. Yan, L. Gao, L. Hu, X. Wu, Y. Dai, and X. Ruan, "Long-branched and densely functionalized anion exchange membranes for fuel cells", J. Membr. Sci., 581, 82 (2019).   DOI
7 Q. Ge, X. Liang, L. Ding, J. Hou, J. Miao, B. Wu, Z. Yang, and T. Xu, "Guiding the self-assembly of hyper-branched anion exchange membranes utilized in alkaline fuel cells", J. Membr. Sci., 573, 595 (2019).   DOI
8 M. Irfan, E. Bakangura, N. U. Afsar, Md. Masem Hossain, J. Ran, and T. Xu, "Preparation and performance evaluation of novel alkaline stable anion exchange membranes", J. Power. Soc., 355, 171 (2017).   DOI
9 B. Eriksson, H. Grimler, A. Carlson, H. Ekstrom, R. W. Lindstrom, G. Lindbergh, and C. Lagergren, "Quantifying water transfer in anion exchange membrane fuel cells", Int. J. Hydrogen Energy, 44, 4930 (2019).   DOI
10 J. Hou, X. Wang, Y. Liu, Q. Ge, Z. Yang, L. Wu, and T. Xu, "Witting reaction constructed an alkaline stable anion exchange membrane", J. Membr. Sci., 518, 282 (2016).   DOI
11 C.-H. Woo, "Current patents and papers research trend of fuel cell membrane", Membr. J., 26(6), 407 (2016).   DOI
12 J.-P. Hwang, C.-H. Lee, and Y.-T. Jeong, "Research trends and prospects of reverse electrodialysis membranes", Membr. J., 27(2), 109 (2017).   DOI
13 G. Shukla and V. K. Shahi, "Amine functionalized graphene oxide C16 chain grafted with poly(ether sulfone) by DABCO coupling: Anaion exchange membrane for vanadium redox flow battery", J. Membr. Sci., 575, 109 (2019).   DOI
14 J. Hou, Y. Liu, Y. Liu, L. Wu, Z. Yang, and T. Xu, "Self-healing anion exchange membrane for pH 7 redox flow batteries", Chem. Eng. Sci., 201, 167 (2019).   DOI
15 L. Zeng, T. S. Zhao, L. Wei, H. R. Jiang, and M. C. Wu, "Anion exchange membranes for aqueous acid-based redox flow batteries: Current status and challenges", Applied Energy, 233, 622 (2019).   DOI
16 J.-M. Lee, M.-S. Lee, K.-S. Nam, J.-D. Jeon, Y.-G. Yoon, and Y.-W. Choi, "A study on the effect of different functional groups in anion exchange membranes for vanadium redox flow batteries", Membr. J., 27(5), 415 (2017).   DOI
17 D.-J. Kim and S.-Y. Nam, "Research trend of polymeric ion-exchange membrane for vanadium redox flow battery", Membr. J., 22(5), 285 (2012).
18 G.-J. Hwang, S.-W. Kim, D.-M. In, D.-Y. Lee, and C.-H. Ryu, "Application of the commercial ion exchange membrane in the all-vanadium redox flow battery", J. Ind. Eng. Chem., 60, 360 (2018).   DOI
19 H.-S. Choi, Y.-H. Oh, C.-H. Ryu, and G.-J. Hwang, "Characteristics of the all-vanadium redox flow battery using anion exchange membrane", J. Taiwan Inst. Chem. Eng., 45, 2920 (2014).   DOI
20 G.-J. Hwang, S.-G. Lim, S.-Y. Bong, C.-H. Ryu, and H.-S. Choi, "Preparation of anion exchange membrane using polyvinyl chloride (PVC) for alkaline water electrolysis", Korean J. Chem. Eng., 32(9), 1896 (2015).   DOI
21 H. Ito, N. Kawaguchi, S. Someya, T. Munakata, N. Miyazaki, M. Ishida, and A. Nakano, "Experimental investigation of electrolytic solution for anion exchange membrane water electrolysis", Int. J. Hydrogen Energy, 43, 17030 (2018).   DOI
22 L. Wang and M. A. Hickner, "Highly ordered ion-conducting block copolymers by hydrophobic block modification", J. Mater. Chem. A, 4, 31 (2016).
23 J.-G. Kim, S.-H. Lee, S.-I Choi, C.-S. Jin, J.-C. Kim, C.-H Ryu, and G.-J. Hwang, "Application of Psf-PPSS-TPA composite membrane in the all-vanadium redox flow battery", J. Ind. Eng. Chem., 16, 756 (2010).   DOI
24 X. Dong, S. Hou, H. Mao, J. Zheng, and S. Zhang, "Novel hydrophilic-hydrophobic block copolymer based on cardo poly(arylene ether sulfone)s with bis-quaternary ammonium moieties for anion exchange membranes", J. Membr. Sci., 518, 31 (2016).   DOI
25 G.-J. Hwang and H. Ohya, "Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery", J. Memb. Sci., 120, 55 (1996).   DOI
26 G.-J. Hwang and H. Ohya, "Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery", J. Memb. Sci., 132(1), 55 (1997).   DOI