Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.5.406

Preparation and Electrochemical Applications of Pore-filled Ion-exchange Membranes with Well-adjusted Cross-linking Degrees: Part I. All Vanadium Redox Flow Battery  

Lee, Ji-Eun (Department of Green Chemical Engineering, Sangmyung University)
Park, Ye-Rin (Department of Green Chemical Engineering, Sangmyung University)
Kim, Do-Hyeong (Department of Green Chemical Engineering, Sangmyung University)
Kang, Moon-Sung (Department of Green Chemical Engineering, Sangmyung University)
Publication Information
Membrane Journal / v.27, no.5, 2017 , pp. 406-414 More about this Journal
Abstract
In this study, we have developed pore-filled ion-exchange membranes (PFIEMs) filled with ionomer in a thin polyethylene porous film (thickness = $25{\mu}m$) and investigated the charge-discharge characteristics of the all vanadium redox flow battery (VRFB) employing them. Especially, the degree of crosslinking and free volume of the PFIEMs were appropriately controlled to produce ion-exchange membranes exhibiting both the low membrane resistance and low vanadium permeability by mixing crosslinking agents having different molecular size. As a result, the prepared PFIEMs exhibited excellent electrochemical properties which are comparable to those of the commercial membranes. Also, it was confirmed through the experiments of vanadium ion permeability and VRFB performance evaluation that the PFIEMs showed low vanadium ion permeability and high charge-discharge efficiency in comparison with the commercial membrane despite their thin film thickness.
Keywords
Pore-filled ion-exchange membranes; all vanadium redox flow battery; degree of crosslinking; free volume; low vanadium permeability;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 M. Skyllas-Kazacos and F. Grossmith, "Efficient vanadium redox flow cell", J. Electrochem. Soc., 134, 2950 (1987).   DOI
2 G. J. Hwang and H. Ohya, "Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery", J. Membr. Sci., 120, 55 (1996).   DOI
3 W. Wang, Q. Luo, B. Li, X. Wei, L. Li, and Z. Yang, "Recent progress in redox flow battery research and development", Adv. Funct. Mater., 23, 970 (2013).   DOI
4 G. J. Hwang and H. Ohya, "Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery", J. Membr. Sci., 132, 55 (1997).   DOI
5 Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu, "Electrochemical energy storage for green grid", Chemical reviews, 111, 3021 (2011).   DOI
6 C. Ding, H. Zhang, X. Li, T. Liu, and F. Xing, "Vanadium flow battery for energy storage: Prospects and challenges", J. Phys. Chem. Lett., 4, 1281 (2013).   DOI
7 C. Sun, J. Chen, H. Zhang, X. Han, and Q. Luo, "Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery", J. Power Sources, 195, 890 (2010).   DOI
8 S. C. Chieng, M. Kazacos, and M. S. Kazacos, "Preparation and evaluation of composite membrane for vanadium redox battery application", J. Power Sources, 39, 11 (1992).   DOI
9 T. Mohammadi, S. C. Chieng, and M. S. Kazacos, "Water transport study across commercial ion exchange membranes in the vanadium redox flow battery", J. Membr. Sci., 133, 151 (1997).   DOI
10 T. Mohammadi and M. S. Kazacos, "Evaluation of the chemical stability of some membranes in vanadium solution", J. Appl. Electrochem., 27, 153 (1997).   DOI
11 D. Chen, M. A. Hickner, E. Agar, and E. C. Kumbur, "Optimized anion exchange membranes for vanadium redox flow batteries", ACS Appl. Mater. Interfaces, 5, 7559 (2013).   DOI
12 B. Jiang, L. Yu, L. Wu, D. Mu, L. Liu, J. Xi, and X. Qiu, "Insights into the impact of the Nafion membrane pretreatment process on vanadium flow battery Performance", ACS Appl. Mater. Interfaces, 8, 12228 (2016).   DOI
13 M. Vijayakumar, B. Schwenzer, S. Kim, Z. Yang, S. Thevuthasan, J. Liu, G. L. Graff, and J. Hu, "Investigation of local environments in Nafion- $SiO_2$ composite membranes used in vanadium redox flow batteries", Solid State Nuclear Magnetic Resonance, 42, 71 (2012).   DOI
14 T. Yamaguchi, S. Nakao, and S. Kimura, "Plasmagraft filling polymerization: Preparation of a new type of pervaporation membrane for organic liquid mixtures", Macromolecules, 24, 5522 (1991).   DOI
15 T. Yamaguchi, F. Miyata, and S. Nakao, "Porefilling type polymer electrolyte membranes for a direct methanol fuel cell", J. Membr. Sci., 214, 283 (2003).   DOI
16 W. Wei, H. Zhang, X. Li, Z. Mai, and H. Zhang, "Poly(tetrafluoroethylene) reinforced sulfonated poly(ether ether ketone) membranes for vanadium redox flow battery application", J. Power Sources, 208, 421 (2012).   DOI
17 D.-H. Kim, J.-S. Park, M. Choun, J. Lee, and M.-S. Kang, "Pore-filled anion-exchange membranes for electrochemical energy conversion applications", Electrochim. Acta, 222, 212 (2016).   DOI
18 D.-H. Kim and M.-S. Kang, "Preparation and characterizations of ionomer-coated pore-filled ion-exchange membranes for reverse electrodialysis", Membr. J., 26, 43 (2016).   DOI
19 D.-H. Kim, J.-S. Park, and M.-S. Kang, "Controlling water splitting characteristics of anion-exchange membranes by coating imidazolium polymer", Membr. J., 25, 152 (2015).   DOI
20 S.-J. Seo, B.-C. Kim, K.-W. Sung, J. Shim, J.-D. Jeon, K.-H. Shin, S.-H. Shin, S.-H. Yun, J.-Y. Lee, and S.-H. Moon, "Electrochemical properties of pore-filled anion exchange membranes and their ionic transport phenomena for vanadium redox flow battery applications", J. Membr. Sci., 428, 17 (2013).   DOI
21 X. Li, H. Zhang, Z. Mai, H. Zhang, and I. Vankelecom, "Ion exchange membranes for vanadium redox flow battery (VRB) applications", Energy Environ. Sci., 4, 1147 (2011).   DOI
22 D.-H. Kim, Y.-E. Choi, J.-S. Park, and M.-S. Kang, "Development and application of cation-exchange membranes including chelating resin for efficient heavy-metal ion removal", Membr. J., 27, 129 (2017).   DOI