• Title/Summary/Keyword: low temperature irradiation

Search Result 275, Processing Time 0.037 seconds

Control of Size and Morphology of Particles Using CO2 Laser in a Flame (화염증 CO2 Laser를 이용한 입자의 크기 및 형상 제어)

  • Lee, Donggeun;Lee, Seonjae;Choi, Mansoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1379-1389
    • /
    • 1999
  • A new technique for control of size and shape of flame-made particles is Introduced. The characteristic sintering time can be controlled Independently of collision time by heating the particles with irradiation of laser because the sintering time strongly depends on temperature. A coflow oxy-hydrogen diffusion flame burner was used for $SiCl_4$ conversion to silica particle. Nanometer sized aggregates irradiated by a high power CW $CO_2$ laser beam were rapidly heated up to high temperatures and then were sintered to approach volume-equivalent spheres. The sphere collides much slower than the aggregate, which results in reduction of sizes of particles maintaining spherical shape. Light scattering of Ar ion laser and TEM observation using a local sampling device were used to confirm the above effects. When the $CO_2$ laser was irradiated at low position from the burner surface, particle generation due to gas absorption of laser beam occurred and thus scattering intensity increased with $CO_2$ laser power. At high irradiation position, scattering intensity decreased with $CO_2$ laser power and TEM image showed a clear mark of evaporation and recondensation of particles for high $CO_2$ laser power. When the laser was irradiated between the above two positions where small aggregates exist, average size of spherical particles obviously decreased to 58% of those without $CO_2$ laser irradiation with the spherical shape. Even for increased carrier gas flow rate by a factor of three, TEM photograph also revealed considerable reduction of particle size.

Fabrication Of Ultraviolet LED Light Source Module Of Current Limiting Diode Circuit By Using Flip Chip Micro Soldering (마이크로솔더링을 이용한 정전류다이오드 회로 자외선 LED 광원모듈 제작)

  • Park, Jong-Min;Yu, Soon Jae;Kawan, Anil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.237-240
    • /
    • 2016
  • The improvement of irradiation intensity and irradiation uniformity is essential for large area and high power UVA light source application. In this study, large number of chips bonded by micro soldering technique were driven by low current, and current limiting diodes were configured to supply constant current to parallel circuits consisting of large number of series strings. The dimension of light source module circuit board was $350{\times}90mm^2$ and 16,650 numbers of 385 nm flip chip LEDs were used with a configuration of 90 parallel and 185 series strings. The space between LEDs in parallel and series strings were maintained at 1.9 mm and 1.0 mm distance, respectively. The size of the flip chip was $750{\times}750{\mu}m^2$ were used with contact pads of $260{\times}669{\mu}m^2$ size, and SAC (96.5 Sn/3.0 Ag/0.5 Cu) solder was used for flip chip bonding. The fabricated light source module with 7.5 m A supply current showed temperature rise of $66^{\circ}C$, whereas irradiation was measured to be $300mW/cm^2$. Inaddition, 0.23% variation of the constant current in each series string was demonstrated.

Effect of Microwave Irradiation on Exfoliation of Graphene Oxide (마이크로파 조사가 산화그래핀의 화학적 박리에 미치는 효과)

  • Lee, Jae-Hee;Hwang, Ki-Wan;Jeong, Young-Hoon;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.708-713
    • /
    • 2013
  • Graphene oxide has been synthesized by microwave-assisted exfoliation of graphite oxide prepared by modified Hummers method. Graphite was oxidized in a solution of $H_2O_2$ and $KMnO_4$ at $65{\sim}80^{\circ}C$, followed by 10 % $H_2O_2$ solution treatment at $80{\sim}90^{\circ}C$. The graphite oxide was exfoliated under microwave irradiation of 1 kW and was reduced to graphene effectively by hydrazine hydrate ($H_4N_2{\cdot}H_2O$) treatment. The exfoliation of graphene oxide was significantly affected by the microwave irradiation on (heating)/off (cooling) period. An on/off period of 10 s/20 s resulted in much more effective exfoliation than that of 5 s/10 s with the same total treatment time of 10 min. This can be explained by the higher exfoliation temperature of 10 s/20 s. Repetition of the graphite oxidation and exfoliation processes also enhanced the exfoliation of graphene oxide. The thickness of the final graphene products was estimated to be several layers. The D band peaks of the Raman spectra of the final graphene products were quite low, suggesting a high crystal quality.

Study of the Nitrogen-Beam Irradiation Effects on ALD-ZnO Films (ALD로 성장된 ZnO박막에 대한 질소이온 조사효과)

  • Kim, H.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.384-389
    • /
    • 2009
  • ZnO, a wurtzite lattice structure, has attracted much attention as a promising material for light-emitting diodes (LEDs) due to highly efficient UV emission resulting from its large band gap of 3.37 eV, large exciton binding energy of 60 meV, and low power threshold for optical pumping at room temperature. For the realization of LEDs, both n-type ZnO and p-type ZnO are required. Now, n-type ZnO for practical applications is available; however, p-type ZnO still has many drawbacks. In this study, ZnO films were grown on glass substrates by using atomic layer deposition (ALD) and the ZnO films were irradiated by nitrogen ion beams (20 keV, $10^{13}{\sim}10^{15}ions/cm^2$). The effects of nitrogen-beam irradiation on the ZnO structure as well as the electrical property were investigated by using fieldemission scanning electron microscopy (FESEM) and Hall-effect measurement.

Identification of Irradiated Crabs by ESR Spectrometry

  • Nam, Hye-Seon;Ly, Sun-Yung;Yang, Jae-Seung
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.1
    • /
    • pp.1-4
    • /
    • 2000
  • Electron spin resonance (ESR) spectroscopy was used to investigate the effect of irradiation dose on the ESR signal intensity of irradiated crabs and the stability of these radicals under 9 weeks of storage. Swimming and small crabs were irradiated with doses of 0, 1, 3, 5 and 7 kGy using a Co-60 irradiator at ambient temperature. A claw, a walking leg and a cars- pace of the crab pieced and dried were placed in a resonant quart tube within an EPR X-band spectrometer. The irradiated crabs presented an asymmetric absorption in shape at g$_1$=2.002 $\pm$ 0.003 and g$_2$=1.998$\pm$0.005, and were different from the non-irradiated ones. The intensity of the ESR signals was greatest in the claw, intermediate in the carapace and lowest in the walking leg. Samples given low and high doses of irradiation could also be distinguished. The ESR signal after irradiation was stable, even after a 9-week storage.

  • PDF

Decay Process of Charge Distribution in E-beam Irradiated Polymers (전자빔 조사 폴리머의 전자 분포의 축퇴 과정)

  • Choi, Yong-Sung;Kim, Hyung-Gon;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.69-72
    • /
    • 2008
  • Decay processes of accumulated charge in e-beam irradiated polymers during elevating temperature are observed using pulsed electro-acoustic measurement system. Since the polymeric materials have many superior properties such as light-weight, good mechanical strength, high flexibility and low cost, they are inevitable materials for spacecrafts. In space environment, however, the polymers sometimes have serious damage by irradiation of high energy charged particles. When the polymers of the spacecraft are irradiated by high energy charged particles, some of injected charges accumulate and remain for long time in the bulk of the polymers. Since the bulk charges sometimes cause the degradation or breakdown of the materials, the investigation of the charging and the decay processes in polymeric materials under change of temperature is important to decide an adequate material for the spacecrafts. By measuring the charge behavior in e-beam irradiated polymer, such as polyimide or polystyrene, it is found that the various accumulation and decay patterns are observed in each material. The results seem to be useful and be helpful to progress in the reliability of the polymers for the spacecraft.

  • PDF

MPPT Control of Photovoltaic Generation Using MLPO Method (MLPO 방법을 이용한 태양광 발전의 MPPT 제어)

  • Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2064-2075
    • /
    • 2011
  • In this paper, robust multi-level perturbation and observation (MLPO) maximum power point tracking (MPPT) control are presented of the environmental change including the solar radiation and temperature. Because the maximum power point of the Photovoltaic (PV) is changing according to the solar radiation and temperature, the technology which traces the maximum power point in order to increase the power efficiency is recognized as the very important part. The general requirement for the MPPT is that system is simple, the cost is inexpensive, the PV tracking function and output change are small. Conventional perturbation and observation (PO) method is a simple system but there is the disadvantage that an efficiency of system becomes low. In addation, the incremental conductance (IC) control is required expensive CPU because of a large of calculations. In order to solve this problem, in this paper, the MLPO MPPT control using the method diversifying the step size according to the environment condition is presented. The validity of the MLPO method presenting from this paper is proved through analyzing the solar power generation output error at the steady state.

Decay Process of Charge Distribution in E-Beam Irradiated Polymers (E-빔 조사된 폴리머의 전하 분포의 축퇴 과정)

  • Yun, Ju-Ho;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.329-330
    • /
    • 2007
  • Decay processes of accumulated charge in e-beam irradiated polymers during elevating temperature are observed using pulsed electro-acoustic measurement system. Since the polymeric materials have many superior properties such as light-weight, good mechanical strength, high flexibility and low cost, they are inevitable materials for spacecrafts. In space environment, however, the polymers sometimes have serious damage by irradiation of high energy charged particles. When the polymers of the spacecraft are irradiated by high energy charged particles, some of injected charges accumulate and remain for long time in the bulk of the polymers. Since the bulk charges sometimes cause the degradation or breakdown of the materials, the investigation of the charging and the decay processes in polymeric materials under change of temperature is important to decide an adequate material for the spacecrafts. By measuring the charge behavior in e-beam irradiated polymer, such as polyimide or polystyrene, it is found that the various accumulation and decay patterns are observed in each material. The results seem to be useful and be helpful to progress in the reliability of the polymers for the spacecraft.

  • PDF

A Study on the Optical Transmittance of High-energy Electron-beam Irradiated IGZO Thin Films (고 에너지 전자빔 조사된 IGZO 박막의 광 투과도에 대한 연구)

  • Yun, Eui-Jung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.71-77
    • /
    • 2014
  • In this paper, we investigated the effects of high-energy electron beam irradiation (HEEBI) on the optical transmittance of InGaZnO (IGZO) films grown on transparent Corning glass substrates, with a radio frequency magnetron sputtering technique. The IGZO thin films deposited at low temperature were treated with HEEBI in air at room temperature (RT) with an electron beam energy of 0.8 MeV and doses of $1{\times}10^{14}-1{\times}10^{16}electrons/cm^2$. The optical transmittance of the IGZO films was measured using an ultraviolet visible near-infrared spectrophotometer (UVVIS). The detailed estimation process for separating the transmittance of HEEBI-treated IGZO films from the total transmittance of IGZO films on transparent substrates treated with HEEBI is given in this paper. Based on the experimental results, we concluded that HEEBI with an appropriate dose of $10^{14}electrons/cm^2$ causes a maximum increase in the transparency of IGZO thin films. We also concluded that HEEBI treatment with an appropriate dose shifted the optical band gap ($E_g$) toward the lower energy region from 3.38 to 3.31 eV. This $E_g$ shift suggested that HEEBI in air at RT with an appropriate dose acts like a thermal annealing treatment in vacuum at high temperature.

Interaction between Light and other Factors Affecting Germination of Oenothera lamarckiana Ser. Seed. (큰달맞이꽃 종자발아(種子發芽)에 영향하는 요인(要因)과 광간(光間)의 상호작용(相互作用))

  • Kim, J.S.;Hwang, I.T.;Koo, S.J.;Cho, K.Y.
    • Korean Journal of Weed Science
    • /
    • v.8 no.1
    • /
    • pp.15-22
    • /
    • 1988
  • In this experiment, interactions between light and other factors such as chilling, alternating temperature, moisture, content, oxygen, and seed coat which affect germination of Oenothera lamarckiana Ser. seed were investigated to study the physiological effects of light on the germination. Light induced the initial stage of seed germination before radical protrusion by affecting embryo rather than seed coat even under anaerobic condition or low water potential (-18 bars). This light effect on germinability of seed was suppressed by blue light irradiation and the effect was increased with increment of blue light intensity and irradiation time. However, the blue light effect was reversible. Chilling, alternating temperature, softening of seed coat and light showed promotive interaction in the induction of seed germination. Irradiation of filtered light (monochrome), however, reduced chilling effect on germination. Hydrogen-ion concentration and gibberellic acid treatment had no effect on light or dark germination.

  • PDF