• 제목/요약/키워드: low temperature and vacuum

검색결과 823건 처리시간 0.031초

Low-Temperature Si and SiGe Epitaxial Growth by Ultrahigh Vacuum Electron Cyclotron Resonance Chemical Vapor Deposition (UHV-ECRCVD)

  • Hwang, Ki-Hyun;Joo, Sung-Jae;Park, Jin-Won;Euijoon Yoon;Hwang, Seok-Hee;Whang, Ki-Woong;Park, Young-June
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1996년도 The 9th KACG Technical Annual Meeting and the 3rd Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.422-448
    • /
    • 1996
  • Low-temperature epitaxial growth of Si and SiGe layers of Si is one of the important processes for the fabrication of the high-speed Si-based heterostructure devices such as heterojunction bipolar transistors. Low-temperature growth ensures the abrupt compositional and doping concentration profiles for future novel devices. Especially in SiGe epitaxy, low-temperature growth is a prerequisite for two-dimensional growth mode for the growth of thin, uniform layers. UHV-ECRCVD is a new growth technique for Si and SiGe epilayers and it is possible to grow epilayers at even lower temperatures than conventional CVD's. SiH and GeH and dopant gases are dissociated by an ECR plasma in an ultrahigh vacuum growth chamber. In situ hydrogen plasma cleaning of the Si native oxide before the epitaxial growth is successfully developed in UHV-ECRCVD. Structural quality of the epilayers are examined by reflection high energy electron diffraction, transmission electron microscopy, Nomarski microscope and atomic force microscope. Device-quality Si and SiGe epilayers are successfully grown at temperatures lower than 600℃ after proper optimization of process parameters such as temperature, total pressure, partial pressures of input gases, plasma power, and substrate dc bias. Dopant incorporation and activation for B in Si and SiGe are studied by secondary ion mass spectrometry and spreading resistance profilometry. Silicon p-n homojunction diodes are fabricated from in situ doped Si layers. I-V characteristics of the diodes shows that the ideality factor is 1.2, implying that the low-temperature silicon epilayers grown by UHV-ECRCVD is truly of device-quality.

  • PDF

단열성능 개선을 위한 진공유리가 부착된 BIPV Module 개발에 관한 연구 (A Study on the Development of BIPV Module Equipped with Vacuum Glass for Improved Thermal Performance)

  • 엄재용;이현수;서승직
    • 한국태양에너지학회 논문집
    • /
    • 제34권2호
    • /
    • pp.44-52
    • /
    • 2014
  • The main purpose of this paper is to develop the new BIPV module equipped with vacuum glass. Beacuse BIPV module has a function of architectural materials, thermal and PV performance should be simultaneously evaluated. To improve the thermal performance of BIPV module, this study developed BIPV module equipped with a vacuum glass. Those BIPV module was tested with a variety of encapsulants. The results are as follows. When a vacuum glass is laminated with EVA or PVB, it was broken. The reason seems to be bending by unbalance of heat expansion with center and edge of vacuum glass. In case of lamination with resin, there is no breakage and no bending of vacuum glass. Because production was conducted in low pressure & low temperature conditions. And it was also found that vacuum glass does not interfere with the UV curing process.

대형 열진공챔버용 극저온 모사장치 개발

  • 이상훈;조혁진;서희준;문귀원;최석원
    • 항공우주기술
    • /
    • 제3권1호
    • /
    • pp.103-108
    • /
    • 2004
  • 우주환경은 고진공 환경과 태양 복사열에 의한 고온 환경 및 극저온이 반복되는 가혹한 환경으로 특징지어 진다. 위성체는 지상에서 발사되어 우주궤도에 진입한 순간부터 가혹한 우주환경에 노출되어 위성체의 주요부품에 기능장애가 발생하여 결국 임무의 실패로 이어지기도 한다. 따라서 위성체는 지상에서 우주환경시험을 거쳐 기능 및 작동상태를 점검해야 한다. 한국항공우주연구원에서는 ∮3.6m×L3m 규모의 열진공챔버라 불리는 우주환경 모사장비를 보유ㆍ운용 중이나, 정지궤도 위성과 같은 대형 위성체의 시험을 위해 2005년 완공을 목표로 ∮8m×L10m급의 대형열진공챔버를 국산화 제작하고 있다. 통상 열진공챔버는 크게 진공계와 열제어계로 구분되어 질 수 있는데, 특히 열제어계에서 극저온 모사장치는 LN2를 쉬라우드 내부에 순환시킴으로서 -196℃의 극저온을 모사하는 시스템을 말한다. 본 논문에서는 국산화 대형열진공챔버의 열제어계에 적용할 극저온 모사장치의 개발 방안에 대하여 연구하였다.

  • PDF

예냉처리가 풋옥수수의 냉각속도 및 호흡량 변화에 미치는 영향 (Effect of Precooling on Removal of Field Heat and Respiration Rate of Vegetable Corn(Zes Mays L.))

  • 손영구;김성열
    • 한국식품저장유통학회지
    • /
    • 제3권1호
    • /
    • pp.55-60
    • /
    • 1996
  • To obtain the basic data on precooling effects for establishment the suitable postharvest handling technique or method of keeping high quality of vegetalble corn, the sweet, supersweet and waxy corn, (Danok #2, Cocktail #86 and Chalok #1), being mainly consumed as vegetables in Korea, were precooled with ice or vacuum cooling method immediately after harvest. The vacuum cooling was the most effective for the field heat removal of vegetable corn. It took only 30 min. at 4 to 5 torr of cold chamber pressure of vacuum precooler to lower the corn temperature from 30 to 2$^{\circ}C$. The ice cooling was also thought to be a useful precooling method with relatively short cooling time of 6 hrs. The vegetable corn treated with vacuum or ice cooling showed low and stable respiration rates of 25.5 to 43.5 CO2 mg/kg/hr. when stored at 0∼2$^{\circ}C$ while the samples stored at room temperature (20∼25$^{\circ}C$) without precooling were as high as 64.1 to 245 CO, mg/kg/hr.

  • PDF

농축산물의 저장 및 유통을 위한 감압증발 급냉각 시스템에 관한 연구 (A Study on the Rapid Cooling Vacuum System for the Storage and Transportation of the Cold Agriculture and Livestock Products)

  • 김성규;김원녕;김경석;최순열;전현필
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권1호
    • /
    • pp.26-36
    • /
    • 1997
  • Recently, the new refrigerating system, using non - fluorinated hydrocarbon refrigerants has to be developed for the agricultural fields. One of that kinds of systems is the cooling system using the water vapor and vacuum, in which the water evaporate at the low temperature under vacuum and absorb the large amount of the latent heat. If vapor with large amount of latent heat is removed from the system, the system is cooled accordingly. The characteristics of cooling under the vacuum was observed and measured using experimental apparatus, which is consisted of vacuum chamber, the ejectors, the pumps and the measurement apparatus. As the results of experiments, we know that the evaporation in the vacuum occurs vigorously when the materials to be cooled has more amounts of heat before cooling, and by which effects the materials can be cooled. The cooling vacuum system is more efficient than other methods when the agricultural products is chilled or dried.

  • PDF

초고진공 전자 사이클로트론 화학 기상 증착 장치에 의한 저온 실리콘 에피 성장에 기판 DC 바이어스가 미치는 영향 (The Effect of Substrate DC Bias on the Low -Temperature Si homoepitaxy in a Ultrahigh Vacuum Electron Cyclotron Resonance Chemical Vapor Deposition)

  • 태흥식;황석희;박상준;윤의준;황기웅;송세안
    • 한국진공학회지
    • /
    • 제2권4호
    • /
    • pp.501-506
    • /
    • 1993
  • The spatial potential distribution of electron cyclotron resonance plasma is measured as a function of tehsubstrate DC bias by Langmuir probe method. It is observed that the substrate DC bias changes the slope of the plasma potential near the subsrate, resulting in changes in flux and energy of the impinging ions across plasma $_strate boundary along themagnetric field. The effect of the substrate DC bias on the low-temperature silicon homoepitaxy (below $560^{\circ}C$) is examine dby in situ reflection high energy electron diffraction (RHEED), cross-section transmission electron microscopy (XTEM),plan-view TEM and high resolution transmision electron microscopy(HRTEM). While the polycrystalline silicon layers are grow withnegative substrate biases, the single crystaline silicon layers are grown with negative substrate biases, the singel crystalline silicon layers are grown with positive substrate biases. As the substrate bias changes form negative to positive values, the growth rate decreases. It is concluded that the control of the ion energy during plasma deposition is very important in silicon epitaxy at low temperatures below $560^{\circ}C$ by UHV-ECRCVD.VD.

  • PDF

저온환경하 NT(Nano Technology)구조 단열재를 사용한 단열거푸집의 열적성능평가에 관한 실험적 연구 (A Experimental Study of Insulation Performance of Insulated Forms Utilizing NT frame Insulation at Low Temperature)

  • 박장현;김목규;김형철;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 추계 학술논문 발표대회
    • /
    • pp.179-180
    • /
    • 2015
  • In this study, the experimental study on Insulation performance of insulated forms utilizing NT frame heat insulation at low Temperature. For this study, placing insulated TEGO film plywood based form between two constant temperature and humidity chamber that maintaining 10℃, decrease temperature of one chamber to -10℃ and -20℃. Each of steps, maintaining period of temperature was 1 hour. After placing the insulated form, measure temperature of outside if insulated form. As a result of experiment, temperature difference of Fumed Silica Vacuum insulation was lowest.

  • PDF

새로운 저온 열처리 공정으로 제조된 SrBi2Ta2O9 박막의 결정성 및 전기적 특성 (The Crystallinity and Electrical Properties of SrBi2Ta2O9 Thin Films Fabricated by New Low Temperature Annealing)

  • 이관;최훈상;장유민;최인훈
    • 한국재료학회지
    • /
    • 제12권5호
    • /
    • pp.382-386
    • /
    • 2002
  • We studied growth and characterization of $SrBi_2Ta_2O_9$ (SBT) thin films fabricated by low temperature process under vacuum and/or oxygen ambient. A metal organic decomposition (MOD) method based on a spin-on technique and annealing process using a rapid thermal annealing (RTA) method was used to prepare the SBT films. The crystallinity of a ferroelectric phase of SBT thin films is related to the oxygen partial pressure during RTA process. Under an oxygen partial pressure higher than 30 Torr, the crystallization temperature inducing the ferroelectric SBT phase can be lowered to $650^{\circ}C$. Those films annealed at $650^{\circ}C$ in vacuum and oxygen ambient showed good ferroelectric properties, that is, the memory window of 0.5~0.9 V at applied voltage of 3~7 V and the leakage current density of 1.80{\times}10^{-8}$ A/$\textrm{cm}^2$ at an applied voltage of 5V. In comparison with the SBT thin films prepared at 80$0^{\circ}C$ in $O_2$ ambient by furnace annealing process, the SBT thin films prepared at $650^{\circ}C$ in vacuum and oxygen ambient using the RTA process showed a good crystallization and electrical properties which would be able to apply to the virtul device fabrication precess.

휘발성 유기화합물 제거를 위한 저온 vacuum swing adsorption 공정의 실용화 연구 (Practical Study of Low-temperature Vacuum Swing Adsorption Process for VOCs Removal)

  • 전미진;박서현;이형돈;전용우
    • 공업화학
    • /
    • 제28권3호
    • /
    • pp.332-338
    • /
    • 2017
  • 본 연구에서는 주요한 휘발성 유기화합물의 발생원인 도장공장 중에서 중소규모의 공장에 적용 가능한 저온 vacuum swing adsorption (VSA) 기술에 대하여 연구하였다. 저온 VSA 기술이란 기존의 thermal swing adsorption (TSA)의 단점을 보완하기 위하여 저온($60{\sim}90^{\circ}C$)에서 감압하여 흡착질을 탈착하는 방식이다. 국내에서 시판되고 있는 상용 활성탄을 이용하여 대표적인 VOCs인 톨루엔의 흡 탈착 특성을 랩(Lab)규모로 실험하였으며, 이를 바탕으로 $30m^3min^{-1}$ 규모의 VSA 시스템을 설계하여 실제 도장 공장에 적용하여 VSA 시스템의 현장적용 가능성에 대하여 평가하였다. 랩 규모 실험 결과, 2 mm 펠렛형 활성탄은 4 mm 펠렛형 활성탄보다 높은 톨루엔 흡착능을 나타내었으며, 이에 파일럿 규모의 VSA의 충진 활성탄으로 사용되었다. 탈착 실험에서는 $80{\sim}90^{\circ}C$의 온도와 100 torr의 압력이 최적 조건으로 결정되었다. 랩 규모 실험 결과를 바탕으로 파일럿 규모 VSA 시스템을 설계하였으며 실제 도장 공장에 현장 적용하여 95회 흡 탈착 실험을 반복 수행하였다. 수행 결과, 연속 흡 탈착 반복실험 후, 도정공장에서 배출된 VOCs를 98% 이상 효과적으로 제거 가능함을 확인하였으며 VSA 시스템의 안정적인 현장 적용이 가능함을 검증하였다.

Gas and Magenetic Field Effect to Low Pressure Plasma

  • 배인식;나병근;설유빈;유신재;김정형;장홍영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.557-557
    • /
    • 2013
  • Plasma hardly grows in lowpressure because of lack of collision. But low pressure plasma has useful properties because it has typically low electron density. In here, thermal electron is used to make breakdown in low pressure easily. We changed magnetic field strength and gas to control electron density or temperature. IV characteristic and electron density of the discharge are examined and the characteristic of the discharge in presence of magnetic field is also examined. Results showed that depending on the ionization cross section of the gas, electron density is changed and proper strength of magnetic field is required for high electron density.

  • PDF