Browse > Article
http://dx.doi.org/10.3740/MRSK.2002.12.5.382

The Crystallinity and Electrical Properties of SrBi2Ta2O9 Thin Films Fabricated by New Low Temperature Annealing  

Lee, Kwan (Department of Materials Science & Engineering, Korea University)
Choi, Hoon-Sang (Department of Materials Science & Engineering, Korea University)
Jang, Yu-Min (Department of Materials Science & Engineering, Korea University)
Choi, In-Hoon (Department of Materials Science & Engineering, Korea University)
Publication Information
Korean Journal of Materials Research / v.12, no.5, 2002 , pp. 382-386 More about this Journal
Abstract
We studied growth and characterization of $SrBi_2Ta_2O_9$ (SBT) thin films fabricated by low temperature process under vacuum and/or oxygen ambient. A metal organic decomposition (MOD) method based on a spin-on technique and annealing process using a rapid thermal annealing (RTA) method was used to prepare the SBT films. The crystallinity of a ferroelectric phase of SBT thin films is related to the oxygen partial pressure during RTA process. Under an oxygen partial pressure higher than 30 Torr, the crystallization temperature inducing the ferroelectric SBT phase can be lowered to $650^{\circ}C$. Those films annealed at $650^{\circ}C$ in vacuum and oxygen ambient showed good ferroelectric properties, that is, the memory window of 0.5~0.9 V at applied voltage of 3~7 V and the leakage current density of 1.80{\times}10^{-8}$ A/$\textrm{cm}^2$ at an applied voltage of 5V. In comparison with the SBT thin films prepared at 80$0^{\circ}C$ in $O_2$ ambient by furnace annealing process, the SBT thin films prepared at $650^{\circ}C$ in vacuum and oxygen ambient using the RTA process showed a good crystallization and electrical properties which would be able to apply to the virtul device fabrication precess.
Keywords
SBT; MOD; low temperature process; NDRO-FRAM; RTA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B.A. Tuttle and R.W. Schwartz, MRS Bulletin Electriceramic Thin Films Part I, 49 (1996)
2 Tingkai Li, Yongfei Zhu and Seshu B, Desu, Appl. Phys. Lett. 68, 616 (1996)   DOI
3 Hitoshi Tabata, Hidekazu Tanaka, and Tomoji Kawai, Jpn. J. Appl. Phys. 34, 5146 (1995)   DOI
4 A.D. Li, D. Wu, H.Q. Ling, T. Yu, M. Wang, X.B. Yin, Z. G. Liu, N.B. Ming, Thin Solid Films 375, N.l-2, 215 (2000)   DOI   ScienceOn
5 E. Atanassova, A. Paskaleva, Applied Surface Science 103,359 (1996)   DOI   ScienceOn
6 M. Mitsuya, N. Nukaga, T. Watanabe, H. Funakubo, and K. Saito, Jpn. J. Appl. Phys. Part 2-Letters 40, N. 7B,L758 (2001)   DOI   ScienceOn
7 J.F. Scott and C.A. Paz de Araujo, Science 246, 1400 (1989)   DOI   ScienceOn
8 Yasuyuki Ito, Maho Ushikubo, Seiichi Yokoyama and Hironori Matsunaga, Integrated Ferroelectrics 14, 123 (1997)   DOI   ScienceOn
9 R. Dat and J.K. Lee, Appl. Phys. Lett. 67, 572 (1995)   DOI   ScienceOn
10 S. Chattopadhyay, A. Kvit, D. Kumar, A.K. Sharma, J. Sankar, J. Narayan, V.S. Knight, T.S. Coleman, and C. B. Lee, Appl. Phys. Lett. 78, 3514 (2001)   DOI   ScienceOn
11 S. Bhattacharyya, A.R. James, and S.B. Krupanidhi, Solid State Communications 108, N.10, 759 (1998)   DOI   ScienceOn