• Title/Summary/Keyword: low power MAC protocol

Search Result 59, Processing Time 0.028 seconds

An Energy-Efficient Asynchronous Sensor MAC Protocol Design for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 비동기 방식의 센서 MAC 프로토콜 설계)

  • Park, In-Hye;Lee, Hyung-Keun;Kang, Seok-Joong
    • Journal of IKEEE
    • /
    • v.16 no.2
    • /
    • pp.86-94
    • /
    • 2012
  • Synchronization MAC Protocol such as S-MAC and T-MAC utilize duty cycling technique which peroidically operate wake-up and sleep state for reducing energy consumption. But synchronization MAC showed low energy efficiency because of additional control packets. For better energy consumption, Asychronization MAC protocols are suggested. For example, B-MAC, and X-MAC protocol adopt Low Power Listening (LPL) technique with CSMA algorithm. All nodes in these protocols joining a network with independent duty cycle schedules without additional synchronization control packets. For this reason, asynchronous MAC protocol improve energy efficiency. In this study, a low-power MAC protocol which is based on X-MAC protocol for wireless sensor network is proposed for better energy efficiency. For this protocol, we suggest preamble numbering, and virtual-synchronization technique between sender and receive node. Using TelosB mote for evaluate energy efficiency.

A Novel WBAN MAC protocol with Improved Energy Consumption and Data Rate

  • Rezvani, Sanaz;Ghorashi, S. Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2302-2322
    • /
    • 2012
  • Wireless Body Area Networks (WBANs) are introduced as an enabling technology in tele-health for patient monitoring. Designing an efficient Medium Access Control (MAC) protocol is the main challenge in WBANs because of their various applications and strict requirements such as low level of energy consumption, low transmission delay, the wide range of data rates and prioritizing emergency data. In this paper, we propose a new MAC protocol to provide different requirements of WBANs targeted for medical applications. The proposed MAC provides an efficient emergency response mechanism by considering the correlation between medical signals. It also reduces the power consumption of nodes by minimizing contention access, reducing the probability of the collision and using an efficient synchronization algorithm. In addition, the proposed MAC protocol increases the data rate of the nodes by allocating the resources according to the condition of the network. Analytical and simulation results show that the proposed MAC protocol outperforms IEEE 802.15.4 MAC protocol in terms of power consumption level as well as the average response delay. Also, the comparison results of the proposed MAC with IEEE 802.15.6 MAC protocol show a tradeoff between average response delay and medical data rate.

Low Power MAC Protocol Design of an Efficient Preamble Exploiting Virtual Synchronization Scheme for Wireless Sensor Networks (무선 센서 네트워크를 위한 효율적인 프리앰블 가상 동기화 기법을 사용하는 저전력 MAC 프로토콜 설계)

  • Lee, Sung-Hun;Hwang, Se-Wook;Lee, Hyuk-Joon;Lee, Hyung-Geun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5B
    • /
    • pp.762-770
    • /
    • 2010
  • The researches about energy efficieny of wireless sensor MAC protocol is an issue in present days. Therefore, MAC and routing protocols for reducing energy consumption at sensor nodes is needed. In this study, a low-power MAC protocol for sensor network is proposed, which in based on X-MAC by exploiting virtual synchronization. The virtual synchronization technique lets senders postpone packet transmission until receivers' wake-up time, so that senders transmit only one or two short preambles. Using NS-2, a proposed MAC protocol improve the energy efficiency by 10% compared with the X-MAC protocol.

An Adaptive MAC Protocol considering Real Time in Wireless Sensor Networks

  • On, Jeong-Seok;Kim, Jae-Hyun;Oh, Young-Yul;Lee, Jai-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12A
    • /
    • pp.1329-1338
    • /
    • 2007
  • Leading MAC protocols developed for duty-cycled WSNs such as B-MAC employ a long preamble and channel sampling. The long preamble introduces excess latency at each hop and suffers from excess energy consumption at non-target receivers. In this paper we propose AS-MAC (Asynchronous Sensor MAC), a low power MAC protocol for wireless sensor networks (WSNs). AS-MAC solves these problems by employing a series of preload approach that retains the advantages of low power listening and independent sleep schedule. Moreover AS-MAC offers an additional advantage such as flexible duty cycle as data rate varies. We demonstrate that AS-MAC is better performance than B-MAC through analysis and evaluation.

A Power-based Pipelined-forwarding MAC Protocol for Energy Harvesting Wireless Sensor Networks (에너지 하베스팅 무선 센서네트워크을 위한 전력기반 Pipelined-forwarding MAC프로토콜)

  • Shim, Kyuwook;Park, Hyung-Kun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.98-101
    • /
    • 2019
  • In this paper, we propose the power-based pipelined-forwarding MAC protocol which can select relay nodes according to the residual power and energy harvesting rate in EH-WSN (energy-harvesting wireless sensor networks). The proposed MAC follows a pipelined-forwarding scheme in which nodes repeatedly sleep and wake up in an EH-WSN environment and data is continuously transmitted from a high-level node to a low-level node. The sleep interval is adaptively controlled so that nodes with low energy harvesting rate can be charged sufficiently, thereby minimizing the transmission delay and increasing the network lifetime. Simulation shows that the proposed MAC protocol improves the balance of residual power and network lifetime.

A Study of MAC Protocol for effective channel usage in Wireless Sensor Networks (무선 센서 네트워크에서 효율적인 채널 사용을 위한 MAC 프로토콜에 관한 연구)

  • Choi, Ji-Hyoung;Kim, Dong-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.371-374
    • /
    • 2007
  • The effective channel usage is important for delivering a large number of packets in a short time, and it enhances channel utilization in sensor networks. Channel utilization is a good metric to illustrate MAC protocol efficiency. This paper presents the MAC(Media Access Control) Protocol that combines the advantages of B-MAC(Berkeley-MAC) and TDMA(Time Division Multiple Access) to obtain high channel utilization. Basically, Using the backoff, CCA(Clear Channel Assessment) and LPL(Low Power Listen) mechanisms reduce collision and energy consumption, this protocol makes at the same time transmission method different depending on contention state and obtains high channel utilization. Through the simulation, this paper shows enhanced performance comparing with existing MAC Protocols.

  • PDF

Adaptive Medium Access Control protocol for low-power wireless sensor network (저전력 무선 센서 네트워크를 위한 적응적 MAC 프로토콜)

  • Kang, Jeong-Hoon;Lee, Min-Goo;Yoon, Myung-Hyun;Yoo, Jun-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.209-211
    • /
    • 2005
  • This paper proposes a adaptive medium-access control(MAC) protocol designed for low-power wireless multi-hop sensor networks which is used for connecting physical world and cyber computing space. Wireless multi-hop sensor networks use battery-operated computing and sensing device. We expect sensor networks to be deployed in an ad hoc fashion, with nodes remaining inactive for long time, but becoming suddenly active when specific event is detected. These characteristics of multi-hop sensor networks and applications motivate a MAC that is different from traditional wireless MACs about power conservation scheme, such as IEEE 802.11. Proposed MAC uses a few techniques to reduce energy consumption. Result show that proposed MAC obtains more energy savings.

  • PDF

MAC Algorithm of Sensor Networks to Service System (서비스 시스템에 따른 센서네트워크 MAC 알고리즘)

  • Park, Woo-Chool;Cho, Soo-Hyung;Lee, Sang-Hak;Kim, Dae-Whan;Yoo, June-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.225-227
    • /
    • 2004
  • A sensor networkis composed of a large number of sensor nodes, which are densely deployed either inside the phenomenon or very close to it. One of the most important constraints on sensor nodes is the low power consumption requirement. Sensor nodes carry limited, generally irreplaceable, power sources. Therefore, while traditional networks aim to achieve high quality of service (QoS) provisions, sensor network protocols must focus primarily on power conservation. This paper presents the characteristics of energy consuming, average delay in 802.11 MAC, S-MAC that is specifically designed for wireless sensor networks. We analyze the energy consuming state in the 802.11 MAC in the simulation topology nodes, and measure average delay in 802.11 and S-MAC. Energy efficiency is the primary goal in this protocol design. 802.11 MAC is more efficient than S-MAC in the average delay, throughput. However S-MAC is an energy efficient protocol, a tradeoff between energy efficiency and delay.

  • PDF

The Optimization of IEEE 802.15.4 PHY/MAC with Hardwired Low-MAC (Hardwired Low-MAC 기능을 이용한 IEEE 802.15.4 PHY/MAC 프로토콜 최적화)

  • Hwang, Tae-Ho;Kim, Dong-Sun;Won, Gwang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1B
    • /
    • pp.95-105
    • /
    • 2010
  • IEEE 802.15.4 is the one of the protocols for radio communication in a personal area network. Since it aims to provide low cost and low power communication for ubiquitous communication, it requires high level of optimization in implementation. Recently, there have been many studies on the performance evaluation of IEEE 802.15.4 MAC protocol. According to the results of the studies, it is tendency that the transceiver is implemented to SoC type. On the implementation, the specific functions of MAC like CSMA-CA and MAC frame handling is designed to hardwired functions. In this paper, we implemented the protocol with hardwired low MAC (HL-MAC) and its state machine for the optimization from the physical layer and MAC layer. it has the characteristics of the small code size and the enhanced power consumption.

A Power-Efficient MAC Protocol for WBAN

  • Kwak, Kyung-Sup;Ullah, Sana;Kwak, Dae-Han;Lee, Cheol-Hyo;Lee, Hyung-Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.131-140
    • /
    • 2009
  • A key challenge for Wireless Body Area Network (WBAN) is to maximize the network lifetime with power-efficient and flexible duty cycling techniques on energy-constraint sensor nodes. In this paper, we propose a novel power-efficient MAC protocol for WBAN that accommodates normal, emergency, and on-demand traffic in a reliable manner. This protocol supports two wakeup mechanisms, a traffic-based wakeup mechanism, which accommodates normal traffic by exploiting the node's traffic patterns, and a wakeup radio mechanism, which accommodates emergency and on-demand traffic by using a wakeup radio. It can be seen that the proposed protocol not only improves the lifetime of WBAN but also provides a reliable method to handle sporadic events. Simulation results show that the proposed protocol outperforms WiseMAC in terms of low-power consumption and delay.

  • PDF