• Title/Summary/Keyword: low permeability

Search Result 882, Processing Time 0.031 seconds

Impact Assessment of Turbidity Water caused Clays on Algae Growth (조류성장에 미치는 점토탁수의 영향평가)

  • Park, Chan-Gab;Kang, Mee-A
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.403-409
    • /
    • 2006
  • This study was performed to assess the clay impact on alga growth which was a primary producer, in view of food chain in ecosystem. As clay minerals caused turbidity, a low sedimentation, high adsorption capacity with organic matter, adsorption - desorption effect with ionic chemicals, clay minerals were supposed to have a significant effect on the aquatic system. In study we tried to turn out NOAEL (No-observed-adverse-effect-level) of clay materials on the algae growth inhibition using such as kaolinite, sericite and montmorillonite. This study was indicated. (1) In both of kaolinite and sericite, the $72hr-EC_{50}$ of them shows 2,752 mg/L and 2,775 mg/L, respectively. (2) On the other hand, in the case of montmorillonite, the $72hr-EC_{50}$ is not shown a significant difference to that of control samples. (3) It can be explained that is also a very important parameter in an alga growth. Because an alga growth was increased when the permeability of W visible radiation was increased in all clay cases. (4) It is demonstrated alga growth was affected by the characteristics of clay materials. Hence we can assess the $\ulcorner$water environmental risk assessment caused clay materials$\lrcorner$ using the alga growth inhibition level indirectly.

A Study on the Consolidation Characteristics Using the Constant Strain Rate Test of Remolded Gwangyang Marine Clay (일정변형률 시험을 이용한 재성형 광양 해성점토의 압밀특성 연구)

  • Jang, Joeng-Min;Kim, Jin-Young;Joeng, Woon-Ki;Choi, Jin;Jin, Young-Sik;Kang, Kwon-Soo;Baek, Won-Jin;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.33-43
    • /
    • 2014
  • Recently, the case to construct the structure on the soft clayey ground has increased and in order to the reduction of the cost of construction and maintenance on the social infrastructure facilities we have been trying to improve the soft clayey ground using the existing methods such as the pre-loading method and the vertical drain method. Like this, when various ground improvement methods are applied on the soft clayey ground, a long-term consolidation settlement will be key issue due to low permeability coefficient of cohesive soil. According to existing research results that relate to the consolidation settlement, the loading periods for existing the standard consolidation test (Oedometer test) to obtain the consolidation parameters are needed for minimum ten days or more. Therefore, in this study, the standard consolidation test (24 hours step-loading) and constant strain rate consolidation test changed by strain rate was performed using the remolded marine clay on Gwangyang bay composed of a soft clayey ground of the south-west coast. From the laboratory test results, the characteristics of compression, strain-effective stress relations by constant strain rate and the variation characteristic of the pore water pressure by different of loading speed and the relation between consolidation parameters and constant strain rate are compared and analyzed.

Separation of $SF_6$ from $SF_6/N_2$ Mixtures Using Polymeric Membranes (고분자 분리막을 이용하여 $SF_6/N_2$ 혼합 기체에서 $SF_6$ 분리)

  • Ko, Young-deok;Lee, Hyung-Keun;Hong, Seong-Uk
    • Membrane Journal
    • /
    • v.22 no.1
    • /
    • pp.72-76
    • /
    • 2012
  • $SF_6$ has an extremely high global worming potential (GWP). Therefore, there has been an effort to reduce the use of $SF_6$ and its emission into atmosphere. One possible solution for minimizing the use of $SF_6$ in electrical equipments is utilization of gas mixtures such as $SF_6/N_2$. The $SF_6$ concentration in the gas mixture varies from 10 to 60%. However, when the apparatus is repaired or dismantled, we have to recover $SF_6$ from the gas mixture. Since the boiling point of $SF_6$is low (${\sim}-60^{\circ}C$), the liquefaction method is difficult to apply. One possible alternative is the membrane separation technology. In this study, we investigated the $SF_6$ and $N_2$ permeation properties of 5 polymeric membranes. For example, permeability of $N_2$ in BOPP membrane at $25^{\circ}C$was 0.19 barrer, whereas that of $SF_6$ was only 0.0012 barrer, resulting in the selectivity of 158. An upper bound for $SF_6/N_2$ gas pair was suggested for the first time with n = -1.33 and k = 160 (barrer).

Evaluation on the Performance of Coating Materials for Improving the Durability of Concretes (콘크리트의 내구성 증진을 위한 코팅재의 성능 평가)

  • Kim, Sung-Soo;Choi, Choon-Sik;Nam, Yong-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.99-107
    • /
    • 2003
  • Normally coating is used a method for protecting reinforced concrete. For this purpose, organic as well as inorganic coatings are used. The advantages of inorganic coatings are lower absorption of UV, non-burning etc. On the other hand, organic coatings have the advantage of low permeability of $CO_2$, $SO_2$ and water. Organic coatings provide better protection for reinforced concrete. However, in organic coatings such as epoxy, urethane and acryl, long-term adhesive strength is reduced and the formed membrane of those is blistered by various causes. Also when organic coatings are applied to the wet surface of concrete, they have a problem with adhesion. So, we developed coating material, WGS-Eco which was hybridized with polymer and cement based material to protect concrete structures and solve problems of organic coatings. This study was conducted an comparative evaluation on physical and durable performance of developed coating material and previously used coating materials. As a result, the performance of developed coating material was not inferior to organic coating materials. So, the developed coating material was considered as a suitable coating material which had advantages of inorganic and organic coatings for protecting concrete.

Study of Polymer Rapid Setting Cement Concrete Using Electric Arc Furnace Oxidizing Slag Aggregate (전기로(電氣爐) 산화(酸化)슬래그 잔골재를 이용한 폴리머 속경성(速硬性) 시멘트 콘크리트 기초물성(基礎物性) 연구(硏究))

  • Jung, Won-Kyong;Gill, Yong-Soo;Kang, Seung-Hee
    • Resources Recycling
    • /
    • v.21 no.1
    • /
    • pp.30-40
    • /
    • 2012
  • Electric arc furnace slag is made in ironworks during steel refining, it is been increasing chemical and physical resistibility using ageing method of unstable state of melting steel slag for using concrete's fine aggregates. Which is been changing stable molecular structure of aggregates, it restrains moving of ion and molecule. In Korea, KS F 4571 has been prepared for using the electric arc furnace oxidizing slag to concrete aggregates(EFS). In this study, Electric arc furnace oxidizing slag is used in the PRCC(Polymer Rapid setting Cement Concrete) which is applied a bridge pavement of rehabilitation, largely. The results showed that the increment of compressive strength development by 10- 20%. The flexural strength of EFS-Con increased greatly as the electric arc furnace oxidizing slag changed. The compressive strength and flexural strength developed enough for opening the overlayed EFS-Con to the traffic after 4 hours of EFS-Con placement. The permeability of EFS-Con was evaluated as negligible due to its very low charge passed. Thus, EFS-Con could be used at repairing or overlaying the concrete at fast-track job sites.

Processing and MAP(modified atmosphere packaging) Storage of Fresh-cut Apples using CA Stored Apples (CA저장 사과를 이용한 Fresh-cut Apple의 제조 및 MAP저장)

  • 정헌식;문광덕;최종욱
    • Food Science and Preservation
    • /
    • v.6 no.4
    • /
    • pp.351-356
    • /
    • 1999
  • To develop and extend the shelf-life of vitamin C enriched fresh-cut apples using CA stored Fuji apples, dipping in 10% L-ascorbic acid and packaging with 0.03 mm LDPE, 0.04 mm PP and 0.08 mm Nylon/PE film(N$_2$displacement) were carried out. The changes of gas concentrations in the packaging and quality attributes of fresh-cut apples were examined during storage at 10$^{\circ}C$. The concentrations of O$_2$was maintained lower in Nylon/PE film than the other film, the level of O$_2$was in the range of 1∼3%. The increase of C$_2$H$_4$ concentrations in Nylon/PE film bag was more suppressed than the others. The vitamin C content of fresh-cut apples was enriched by dipping in L-ascorbic acid solution up to 241 mg$.$100 g-1 f.w., and the loss or that content was retarded differently by the package conditions of lower O$_2$level during storage. Browning in fresh-cut apples was shown after 6 days of storage in LDPE and PP film. but it was not shown by 14 days of storage in Nylon/PE film. Spoilage and off odor in fresh-cut apples were not detected up to 14 days of storage in Nylon/PE film. The results indicated that the vitamin C enriched fresh-cut apples can be processed from the long-term CA stored apples, and maintaining high quality of the products ill be possible in cases of the application of sealing packaging after O$_2$removal with film having low O$_2$permeability.

  • PDF

The Effect of Popped Rice Hulls Compost Application on Soil Chemical and Physical Properties in Fluvio-marine plain paddy soils (퇴화염토지 논에서 팽화왕겨 퇴비시용이 토양이화학성에 미치는 영향)

  • Yoo, Chul-Hyun;Yang, Chang-Hyu;Kim, Taek-Kyum;Ryu, Jin-Hee;Kim, Byung-Su;Kim, Jae-Duk;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.403-408
    • /
    • 2006
  • Fluvio-marine paddy soils in Korea consist of high silt content and have the hardpan located below 20~30 cm from surface soil. This properties cause poor rice rhizosphere conditions such as low permeability and porosity, high bulk density and hardness. The aims of this study was to investigate the effect of popped rice hulls compost(PRHC) on soil fertility changes in the Fluvio-marine plain paddy soils. Total nitrogen content and nitrogen mineralization rate of PRHC were 1.17 and 33.5, respectively, and its C/N ratio was 35.4. Application of PRHC increased the content of organic matter and exchangeable potassium and improved the bulk density and porosity. The content of $NH_4-N$ in soil was high in the PRHC plot until maximum tillering stage. An uptake amount of fertilized nitrogen was greater in standard fertilization plot at early growth stage, however, it was greater more in PRHC plots at the ripening period than in standard fertilization plot. Among the PRHC treated plots, uptake amount was the greatest in 50% PRHC plot during the all growth period. Nitrogen efficiencies were higher in PRHC plot during the all growth period. Rice yields in all PRHC plots were lower than in standard fertilization, however, the yield of 40% PRHC plot was similar with that of standard.

Potassium Pentane-1,3,3,5-tetracarboxylate Draw Solute Synthesis and Application of Forward Osmosis Process (Potassium Pentane-1,3,3,5-tetracarboxylate 유도용질 합성 및 이를 이용한 정삼투 공정 응용)

  • Lee, Hye-Jin;Choi, Jin-Il;Kwon, Sei;Kim, In-Chul
    • Membrane Journal
    • /
    • v.29 no.2
    • /
    • pp.111-121
    • /
    • 2019
  • An organic citrate series draw solute was synthesized using diethyl malonate for forward osmosis. The structure of the final compound potassium pentane-1,3,3,5-tetracarboxylate was confirmed by $^1H-NMR$ and $^{13}C-NMR$ analysis. Osmotic pressure, solubility, water permeability and reverse salt flux were measured for the properties of the draw solute. Forward osmosis results showed that the draw solute exhibited higher water flux than other draw solutes of trisodium citrate and tripotassium citrate. Reverse salt flux of all the organic daw solutes was much lower than that of NaCl. The osmotic pressure of the synthesized draw solute was 25% lower than that of NaCl. The solubility of the draw solute was 317 g/ 100 g water, which is 8.8 times higher than that of NaCl. A commercialized nanofiltration membrane was used for the recovery of the draw solute. The draw solute could be effectively recovered at low pressure.

Electrochemical Behavior of Cathode Catalyst Layers Prepared with Propylene Glycol-based Nafion Ionomer Dispersion for PEMFC (프로필렌글리콜에 분산된 나피온 이오노머로 제조된 공기극 촉매층의 연료전지 성능 특성 연구)

  • Woo, Seunghee;Yang, Tae-Hyun;Park, Seok-Hee;Yim, Sung-Dae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.512-518
    • /
    • 2019
  • To develop a membrane electrode assembly (MEA) with lower Pt loading and higher performance in proton exchange membrane fuel cells (PEMFCs), it is an important research issue to understand interfacial structure of Pt/C catalyst and ionomer and design the catalyst layer structure. In this study, we prepared short-side-chain Nafion-based ionomer dispersion using propylene glycol (PG) as a solvent instead of water which is commonly used as a solvent for commercially available ionomers. Cathode catalyst layers with different ionomer content from 20 to 35 wt% were prepared using the ionomer dispersion for the fabrication of four different MEAs, and their fuel cell performance was evaluated. As the ionomer content increased to 35 wt%, the performance of the prepared MEAs increased proportionally, unlike the commercially available water-based ionomer, which exhibited an optimum at about 25 wt%. Small size micelles and slow evaporation of PG in the ionomer dispersion were effective in proton transfer by inducing the formation of a uniformly structured catalyst layer, but the low oxygen permeability problem of the PG-based ionomer film should be resolved to improve the MEA performance.

Numerical modelling of Fault Reactivation Experiment at Mont Terri Underground Research Laboratory in Switzerland: DECOVALEX-2019 TASK B (Step 2) (스위스 Mont Terri 지하연구시설 단층 내 유체 주입시험 모델링: 국제공동연구 DECOVALEX-2019 Task B(Step 2))

  • Park, Jung-Wook;Guglielmi, Yves;Graupner, Bastian;Rutqvist, Jonny;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.197-213
    • /
    • 2019
  • We simulated the fault reactivation experiment conducted at 'Main Fault' intersecting the low permeability clay formations of Mont Terri Underground Research Laboratory in Switzerland using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. We formulate the hydro-mechanical coupling relation of hydraulic aperture to consider the elastic fracture opening and failure-induced dilation for reproducing the abrupt changes in injection flow rate and monitoring pressure at fracture opening pressure. A parametric study was conducted to examine the effects of in-situ stress condition and fault deformation and strength parameters and to find the optimal parameter set to reproduce the field observations. In the best matching simulation, the fracture opening pressure and variations of injection flow rate and monitoring pressure showed good agreement with field experiment results, which suggests the capability of the numerical model to reasonably capture the fracture opening and propagation process. The model overestimated the fault displacement in shear direction and the range of reactivated zone, which was attributed to the progressive shear failures along the fault at high injection pressure. In the field experiment results, however, fracture tensile opening seems the dominant mechanism affecting the hydraulic aperture increase.