Browse > Article
http://dx.doi.org/10.9713/kcer.2019.57.4.512

Electrochemical Behavior of Cathode Catalyst Layers Prepared with Propylene Glycol-based Nafion Ionomer Dispersion for PEMFC  

Woo, Seunghee (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER))
Yang, Tae-Hyun (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER))
Park, Seok-Hee (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER))
Yim, Sung-Dae (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER))
Publication Information
Korean Chemical Engineering Research / v.57, no.4, 2019 , pp. 512-518 More about this Journal
Abstract
To develop a membrane electrode assembly (MEA) with lower Pt loading and higher performance in proton exchange membrane fuel cells (PEMFCs), it is an important research issue to understand interfacial structure of Pt/C catalyst and ionomer and design the catalyst layer structure. In this study, we prepared short-side-chain Nafion-based ionomer dispersion using propylene glycol (PG) as a solvent instead of water which is commonly used as a solvent for commercially available ionomers. Cathode catalyst layers with different ionomer content from 20 to 35 wt% were prepared using the ionomer dispersion for the fabrication of four different MEAs, and their fuel cell performance was evaluated. As the ionomer content increased to 35 wt%, the performance of the prepared MEAs increased proportionally, unlike the commercially available water-based ionomer, which exhibited an optimum at about 25 wt%. Small size micelles and slow evaporation of PG in the ionomer dispersion were effective in proton transfer by inducing the formation of a uniformly structured catalyst layer, but the low oxygen permeability problem of the PG-based ionomer film should be resolved to improve the MEA performance.
Keywords
Proton exchange membrane fuel cell (PEMFC); Cathode catalyst layer; Ionomer dispersion; Propylene Glycol (PG);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kudo, K., Jinnouchi, R., Morimoto, Y., "Humidity and Temperature Dependences of Oxygen Transport Resistance of Nafion Thin Film on Platinum Electrode," Electrochim. Acta, 209, 682-690(2016).   DOI
2 Kinoshita, S., Shimohira, T., Watakabe, A., Hommura, S., Saito, S., Tanuma, T., Yamada, K., "Development of PFSA Ionomers and Their Use in Fuel Cells," ECS Transactions, 75(14), 575-580(2016).   DOI
3 Shimizu, R., Park, Y. -C, Kakinuma, K., Iiyama, A., Uchida, M., "Effects of Both Oxygen Permeability and Ion Exchange Capacity for Cathode Ionomers on the Performance and Durability of Polymer Electrolyte Fuel Cells," J. Electrochem. Soc., 165(6), F3063-F3071(2018).   DOI
4 Kodama, K., Shinohara, A., Hasegawa, N., Shinozaki, K., Jinnouchi, R., Suzuki, T., Hatanaka, T., Morimoto Y., "Catalyst Poisoning Property of Sulfonimide Acid Ionomer on Pt(111) surface," J. Electrochem. Soc., 161(5), F649-F652(2014).   DOI
5 Masuda, T., Sonsudin, F., Singh, P.R., Naohara, H., Uosaki, K., "Potential-Dependent Adsorption and Desorption of Perfluorosulfonated Ionomer on a Platinum Electrode Surface Probed by Electrochemical Quartz Crystal Microbalance and Atomic Force Microscopy," J. Phys. Chem. C, 117, 15704-15709(2013).   DOI
6 Yarlagadda, V., Carpenter, M. K., Moylan, T. E., Kukreja, R. S., Koestner, R., Gu, W., Thompson, L., Kongkanand, A., "Boosting Fuel Cell Performance with Accessible Carbon Mesopores," ACS Energy Lett., 3, 618-621(2018).   DOI
7 Choi, B., Langlois, D.A., Mack, N., Johnston, C. M., Kim, Y. S., "The Effect of Cathode Structures on Nafion Membrane Durability," J. Electrochem. Soc., 161(12), F1154-F1162(2014).   DOI
8 Kim, Y. S., Welch, C. F., Mack, N. H., Hjelm, R. P., Orler, E. B., Hawley, M. E., Lee, K. S., Yim, S.-D., Johnston, C. M., "Highly Durable Fuel Cell Eelctrodes Based on Ionomers Dispersed in Glycerol," Phys. Chem. Chem. Phys., 16, 5927-5932(2014).   DOI
9 Welch, C., Labouriau, A., Hjelm, R., Orler, B., Johnston, C., Kim, Y. S., "Nafion in Dilute Solvent Systems: Dispersion or Solution?," ACS Macro Lett., 1(12) 1403-1407(2012).   DOI
10 Kusoglu, A., Weber A. Z., "New Insights into Perfluorinated Sulfonic-Acid Ionomers," Chem. Rev., 117(3), 987-1104(2017).   DOI
11 Doo, G., Lee, J. H., Yuk, S., Choi, S., Lee, D. -H., Lee, D. W., Kim, H. G., Kwon, S. H., Lee, S. G., Kim, H. -T., "Tuning the Ionomer Distribution in the Fuel Cell Catalyst Layer with Scaling the Ionomer Aggregate Size in Dispersion," ACS Appl. Mater. Interfaces, 10, 17835-17841(2018).   DOI
12 Holdcroft, S., "Fuel Cell Catalyst Layers: A Polymer Science Perspective," Chem. Mater., 26, 381-393(2014).   DOI
13 Makharia, R., Mathias, M. F. and Baker, D. R., "Measurement of Catalyst Layer Electrolyte Resistance in PEFCs Using Electrochemical Impedance Spectroscopy," J. Electrochem. Soc., 152(5), A970-A977(2005).   DOI
14 Owejan, J.P., Owejan, J.E., Gu, W., "Impact of Platinum Loading and Catalyst Layer Structure of PEMFC Performance," J. Electrochem. Soc., 160(8), F824-F833(2013).   DOI
15 Ohma, A., Mashio, T. Sato, K., Iden, H., Ono, Y., Sakai, K., Akizuki, K., Takaichi, S., Shinohara, K., "Analysis of Proton Exchange Membrane Fuel Cell Catalyst Layers for Reduction of Platinum Loading at Nissan," Electrochim. Acta, 56, 10832-10841(2011).   DOI
16 Nonoyama, N., Okazaki, S., Weber, A.Z., Ikogi, Y., Yoshida, T., "Analysis of Oxygen-Transport Diffusion Resistance in Proton-Exchange-Membrane Fuel Cells," J. Electrochem. Soc., 158(4), B416-B423(2011).   DOI