• 제목/요약/키워드: low oxygen treatment

검색결과 415건 처리시간 0.039초

참나무재의 약액함침 처리가 폭쇄 및 산소-알칼리펄프화에 미치는 영향 (The Effect of Chemical Pretreatment on Steam Explosion and Oxygen-alkali Pulping of Oak Wood)

  • 박승영;최태호;조남석
    • 펄프종이기술
    • /
    • 제33권3호
    • /
    • pp.75-83
    • /
    • 2001
  • The potential of oxygen delignification is a powerful tool to reduce detrimental environmental effects. This study was performed to investigate the effect of steam explosion treatment of chemically treated oak wood on oxygen-alkali pulping. Pulp yield during steam explosion treatment by ${Na_2}{O_3}$-NaOH impregnation was higher than the other impregnation chemicals. Also, NaOH extraction at room temperature after steam explosion treatment improved the kappa number from 140~116 to 90~64. Oxygen-alkali pulping of chemical steam explosion treated woods affected to pulp yields. ${Na_2}{O_3}$-NaOH impregnation was very effective to higher carbohydrate yields at same delignification level. Its carbohydrate yield seemed to be highly related to the effluent pH. Oxygen-alkali pulping after steam explosion treatment of ${Na_2}{O_3}$-NaOH impregnated wood was shown that carbohydrate yield was very high because its effluent pH was increase from natural to mild alkali. Even if oxygen bleaching limit the delignification to 50% in order to avoid unacceptable yield and viscosity losses, oxygen-alkali pulping after steam explosion by ${Na_2}{O_3}$-NaOH impregnation was possible to extend the delignification more than 80%. Considering high pulp yield with lower lignin content from steam explosion treated wood, it might be profitable to end the cook at a high kappa number instead of a low kappa number, and continuously apply the oxygen delignification, in order to better quality pulp.

  • PDF

저비용 고온초전도 선재 제조 연구 (The Fabrication of Low Cost High Temperature Superconducting Tape)

  • 한상철;성태현;한영희;이준성;이영우;정년호;김상준
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2000년도 KIASC Conference 2000 / 2000년도 학술대회 논문집
    • /
    • pp.85-88
    • /
    • 2000
  • Cu-free Bi-Sr-Ca-O powder mixtures were screen-printed on Cu tapes and heat-treated at 850-$870^{\circ}C$ for several minutes in air, oxygen, nitrogen and low oxygen pressure. Cu-free precursors were composed of Bi_{x}$SrCaO_{y}$ (x=1.2-2). In order to obtain the optimum heat-treatment condition, we studied on an effect of the precursor composition, the printing thickness and the heat-treatment atmosphere on the superconducting properties of Bi2212 films and the reaction mechanism of their rapid formation. Microstructures and phases of thick films were analyzed by optical microscope and XRD. The electric properties of superconducting films were examined by the four probe method. At heat-treatment temperature, the thick films were in a partially molten state by liquid reaction between CuO in the oxidized copper tape and the precursors which were printed on Cu tapes.

  • PDF

Helium/Oxygen Atmospheric Pressure Plasma Treatment on Poly(ethylene terephthalate) and Poly(trimethylene terephthalate) Knitted Fabrics: Comparison of Low-stress Mechanical/Surface Chemical Properties

  • Hwang Yoon Joong;McCord Marian G.;Kang Bok Choon
    • Fibers and Polymers
    • /
    • 제6권2호
    • /
    • pp.113-120
    • /
    • 2005
  • Helium-oxygen plasma treatments were conducted to modify poly(trimethylene terephthalate) (PIT) and poly(ethylene terephthalate) (PET) warp knitted fabrics under atmospheric pressure. Lubricant and contamination removals by plasma etching effect were examined by weight loss $(\%)$ measurements and scanning electron microscopy (SEM) analysis. Surface oxidation by plasma treatments was revealed by x-ray photoelectron spectroscopy (XPS) analyses, resulting in formation of hydrophilic groups and moisture regain $(\%)$ enhancement. Low-stress mechanical properties (evaluated by Kawabata evaluation system) and bulk properties (air permeability and bust strength) were enhanced by plasma treatment. Increasing interfiber and interyarn frictions might play important roles in enhancing surface property changes by plasma etching effect, and then changing low-stress mechanical properties and bulk properties for both fabrics.

Mechanical behavior of HPFRCC using limestone calcined clay cement (LC3) and oxygen plasma treated PP fibers

  • Sajjad Mirzamohammadi;Masoud Soltani
    • Structural Engineering and Mechanics
    • /
    • 제89권4호
    • /
    • pp.349-362
    • /
    • 2024
  • High-performance fiber-reinforced cement composites (HPFRCC) are new materials created and used to repair, strengthen, and improve the performance of different structural parts. When exposed to tensile tension, these materials show acceptable strain-hardening. All of the countries of the globe currently seem to have a need for these building materials. This study aims to create a low-carbon HPFRCC (high ductility) that is made from materials that are readily available locally which has the right mechanical qualities, especially an increase in tensile strain capacity and environmental compatibility. In order to do this, the effects of fiber volume percent (0%, 0.5%, 1%, and 2%), and determining the appropriate level, filler type (limestone powder and silica sand), cement type (ordinary Portland cement, and limestone calcined clay cement or LC3), matrix hardness, and fiber type (ordinary and oxygen plasma treated polypropylene fiber) were explored. Fibers were subjected to oxygen plasma treatment at several powers and periods (50 W and 200 W, 30, 120, and 300 seconds). The influence of the above listed factors on the samples' three-point bending and direct tensile strength test results has been examined. The results showed that replacing ordinary Portland cement (OPC) with limestone calcined clay cement (LC3) in mixtures reduces the compressive strength, and increases the tensile strain capacity of the samples. Furthermore, using oxygen plasma treatment method (power 200 W and time 300 seconds) enhances the bonding of fibers with the matrix surface; thus, the tensile strain capacity of samples increased on average up to 70%.

목조건축물의 흰개미 방제에 대한 국외 현황조사(II) - 일본의 사례를 중심으로 (Study of the present situation on the termite control of wooden structures(II) - Focused on the case of Japan)

  • 정소영
    • 보존과학연구
    • /
    • 통권34호
    • /
    • pp.84-99
    • /
    • 2013
  • 전 세계적으로 분포하고 있는 약 2,900 종의 흰개미 중 23종의 흰개미가 일본에 서식하고 있으며, 이에 따라 1종의 흰개미만 분포하는 우리나라에 비해 더 심각한 피해를 주는 것으로 알려져 있다. 일본에서는 목조건축물에서 흰개미에 의한 피해가 발생하면 화학적 방제(훈증처리, 토양처리, 베이트처리 등)나 비화학적 방제방법(저산소처리, 이산화탄소처리, 고온처리, 저온처리 등)을 이용해 방제처리를 하게 된다. 특히, 훈증처리에 사용되는 메틸 브로마이드 훈증제의 생산과 소비를 2005년부터 전폐하기로 함에 따라 이를 대체하기 위한 다양한 방법들에 대한 검토가 이루어졌으며, 그 결과 실제로 피해 정도가 소규모이거나 장기간의 처리가 가능한 경우 등 일부 경우에는 약제를 사용하지 않는 비화학적 방법이 효과적이라는 것이 확인되었다.

  • PDF

삼산화 몰리브덴 분말로부터 수소 환원에 의한 금속 분말 및 반복 용해에 의한 저산소 잉곳 제조 (Preparation of Low-Oxygen Ingot by Repetitive Melting and Mo Metal Powder by Hydrogen Reduction from $MoO_3$ Powder)

  • 이백규;오정민;김형석;임재원
    • 한국입자에어로졸학회지
    • /
    • 제9권1호
    • /
    • pp.31-36
    • /
    • 2013
  • In this study, Mo metal powder was prepared by hydrogen reduction of Mo trioxides with different purity of 2N and 3N grades. We have obtained Mo metal powder with oxygen content of 1450 ppm by hydrogen reduction and subsequent heat treatment for degassing. Using the Mo metal powder, a low-oxygen Mo ingot was prepared by repetitive vacuum arc melting. The oxygen content of the obtained Mo ingot was less than 70 ppm after vacuum arc melting for 30 min. The purity of the Mo metal powder and the ingot was evaluated using glow discharge mass spectrometry. The purity of the respective Mo ingots was increased to 3N and 4N grades from the Mo powder of 2N and 3N grades after the repetitive vacuum arc melting. The low oxygen Mo ingot thus can be used as a raw material for sputtering targets.

Czochralski 법으로 성장시킨 단결정 Silicon Wafer에서의 표면 무결함층(Denuded Zone) 형성에 관한 연구(I) (The Study on the Denuded Zone Formation of Czochralski-grown Single Crystal Silicon Wafer (I))

  • 김승현;양두영;김창은;이홍림
    • 한국세라믹학회지
    • /
    • 제28권6호
    • /
    • pp.495-501
    • /
    • 1991
  • This study is intended to make defect-free region, denuded zone at the silicon wafer surface for semiconductor device substrates. In this experiment, initial oxygen concentration of starting material CZ-grown silicon wafer, various heat treatment combinations, denuding ambient and the amounts of oxygen reduction were measured, and then denuded zone (DZ) formation and depth were investigated. In Low/High anneal (DZ formation could be achieved), the optimum temperature for Low anneal was 700$^{\circ}C$∼750$^{\circ}C$. In case of High anneal, with the time increased, DZ depth was increased at 1000$^{\circ}C$, 1150$^{\circ}C$ respectively, but on the contrary, DZ depth was decreased at low temperature 900$^{\circ}C$. As well, out-diffusion time below 2 hours was unsuitable for effective Gettering technique even though the temperature was high, and DZ formation could be achieved when initial oxygen concentration was only above 14 ppm in silicon wafer.

  • PDF

오존 처리가 폴리에틸렌 필름의 염색성에 미치는 영향 (Effect of Ozone Treatment on Dyeability of Polyethylene Film)

  • 박수진;신준식;김학용;이덕래
    • 폴리머
    • /
    • 제27권2호
    • /
    • pp.98-105
    • /
    • 2003
  • 오존 처리된 저밀도 폴리에틸렌 (LDPE) 필름의 표면 작용기와 표면 자유에너지에 대하여 고찰하였다. 오존 표면처리 조건을 각각 처리시간, 오존 생산량, 그리고 오존의 농도로 변화시켰으며, 오존 처리된 LDPE 필름 표면에 도입된 작용기는 FTIR-ATR과 XPS 분석을 통하여 알아보았다 LDPE 필름의 표면 자유에너지는 접촉각 측정을 통하여 고찰하였다. 실험결과, 오존으로 표면처리된 LDPE 픽름은 표면에 형성된 산소 함유 작용기로 인하여 물 접촉각이 15$^{\circ}$ 정도 감소하였고, 그 결과 표면 자유에너지의 증가및 $O_{IS}$ / $C_{IS}$ 의 증가를 확인할 수 있었다. 또한, 표면 자유에너지와 산소 함유 작용기는 오존 표면처리 시간과 오존의 농도에 비례하는 관계를 보인 반면, 오존의 총 발생량의 변화는 표면 자유에너지 및 $O_{IS}$ / $C_{IS}$ 의 증가와는 무관하였다. Kubelka-Munk 식을 이용한 염색성 측정 결과로부터, 오존 표면처리는 LDPE 필름 표면에 산소 작용기를 형성시키는데 중요한 역할을 하는 것을 확인할 수 있었으며, 최종 염기성 염료에의 염색성을 향상시켰다.

A comprehensive review of the Fenton-based approaches focusing on landfill leachate treatment

  • Hussain, Mujtaba;Mahtab, Mohd Salim;Farooqi, Izharul Haq
    • Advances in environmental research
    • /
    • 제10권1호
    • /
    • pp.59-86
    • /
    • 2021
  • Landfilling is the most commonly adopted method for a large quantity of waste disposal. But, the main concern related to landfills is the generation of leachate. The leachate is high strength wastewater that is usually characterized by the presence of high molecular recalcitrant organics. Several conventional methods are adopted for leachate treatment. However, these methods are only suitable for young leachate, having high biodegradability and low toxicity levels. The mature and stabilized leachate needs advanced technologies for its effective treatment. Advanced oxidation processes (AOPs) are very suitable for such complex wastewater treatment as reported in the literature. After going through the literature survey, it can be concluded that Fenton-based approaches are effective for the treatment of various high/low strength wastewaters treatment. The applications of the Fenton-based approaches are widely adopted and well recognized due to their simplicity, cost-effectiveness, and reliability for the reduction of high chemical oxygen demand (COD) as reported in several studies. Besides, the process is relatively economical due to fewer chemical, non-sophisticated instruments, and low energy requirements. In this review, the conventional and advanced Fenton's approaches are explained with their detailed reaction mechanisms and applications for landfill leachate treatment. The effect of influencing factors like pH, the dosage of chemicals, nature of reaction matrix, and reagent ratio on the treatment efficiencies are also emphasized. Furthermore, the discussion regarding the reduction of chemical oxygen demand (COD) and color, increase in biodegradability, removal of humic acids from leachate, combined processes, and the pre/post-treatment options are highlighted. The scope of future studies is summarized to attain sustainable solutions for restrictions associated with these methods for effective leachate treatment.

산소 플라즈마를 이용하여 율속 성능이 개선된 불화탄소 기반 리튬 일차전지의 제조 및 전기 화학적 특성 (Fabrication and Electrochemical Characterization of Carbon Fluoride-based Lithium-Ion Primary Batteries with Improved Rate Performance Using Oxygen Plasma)

  • 천서영;하나은;임채훈;명성재;이인우;이영석
    • 공업화학
    • /
    • 제34권5호
    • /
    • pp.534-540
    • /
    • 2023
  • 일차전지 환원극의 활물질로 널리 사용되고 있는 불화탄소는 낮은 전기 전도도, 표면 에너지 및 전해질 투과도 등의 요인에 의하여 Li/CFX 일차전지의 율속 성능 저하를 초래한다. 따라서 본 연구에서는 산소 플라즈마를 이용한 표면처리를 통하여 표면이 개질된 불화탄소를 리튬 일차전지의 환원극으로 사용하여 전지 성능을 향상시키고자 하였다. XPS 및 XRD 분석을 통해 산소 플라즈마 처리에 의해 변화된 불화탄소의 표면 화학적 특성 및 결정 구조 변화를 분석하였으며, 이에 따른 리튬 일차전지의 전기 화학적 특성에 대한 변화를 분석하고 고찰하였다. 그 결과, 탄소 대 불소비율(F/C) 비율이 가장 낮은 산소 플라즈마 처리 조건(7.5 min)에서 반이온성 C-F 결합이 가장 많이 형성되었다. 또한, 이 조건에서 제조된 불화탄소를 환원극의 활물질로 사용한 일차전지는 가장 높은 3 C의 율속 특성을 보였으며, 고율속에서도 비교적 높은 용량(550 mAh/g)을 유지하였다. 본 연구를 통하여, 산소 플라즈마 처리를 통해 불화탄소의 불소함량 및 탄소-불소 간의 결합 유형을 조정하여 고율속 성능을 가진 리튬 일차전지를 제조할 수 있었다.