Browse > Article
http://dx.doi.org/10.12989/aer.2021.10.1.059

A comprehensive review of the Fenton-based approaches focusing on landfill leachate treatment  

Hussain, Mujtaba (Department of Environmental and Management Studies, Al-Falah University)
Mahtab, Mohd Salim (Department of Civil Engineering, Z. H. College of Engineering and Technology, Aligarh Muslim University)
Farooqi, Izharul Haq (Department of Civil Engineering, Z. H. College of Engineering and Technology, Aligarh Muslim University)
Publication Information
Advances in environmental research / v.10, no.1, 2021 , pp. 59-86 More about this Journal
Abstract
Landfilling is the most commonly adopted method for a large quantity of waste disposal. But, the main concern related to landfills is the generation of leachate. The leachate is high strength wastewater that is usually characterized by the presence of high molecular recalcitrant organics. Several conventional methods are adopted for leachate treatment. However, these methods are only suitable for young leachate, having high biodegradability and low toxicity levels. The mature and stabilized leachate needs advanced technologies for its effective treatment. Advanced oxidation processes (AOPs) are very suitable for such complex wastewater treatment as reported in the literature. After going through the literature survey, it can be concluded that Fenton-based approaches are effective for the treatment of various high/low strength wastewaters treatment. The applications of the Fenton-based approaches are widely adopted and well recognized due to their simplicity, cost-effectiveness, and reliability for the reduction of high chemical oxygen demand (COD) as reported in several studies. Besides, the process is relatively economical due to fewer chemical, non-sophisticated instruments, and low energy requirements. In this review, the conventional and advanced Fenton's approaches are explained with their detailed reaction mechanisms and applications for landfill leachate treatment. The effect of influencing factors like pH, the dosage of chemicals, nature of reaction matrix, and reagent ratio on the treatment efficiencies are also emphasized. Furthermore, the discussion regarding the reduction of chemical oxygen demand (COD) and color, increase in biodegradability, removal of humic acids from leachate, combined processes, and the pre/post-treatment options are highlighted. The scope of future studies is summarized to attain sustainable solutions for restrictions associated with these methods for effective leachate treatment.
Keywords
advanced oxidation processes; fenton process, hydroxyl radicals; landfill; leachate treatment;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Aziz, H.A., Alias, S., Adlan, M. N., Asaari, A.H. and Zahari, M.S. (2007), "Colour removal from landfill leachate by coagulation and flocculation processes", Bioresource Technol., 98(1), 218-220. https://doi.org/10.1016/j.biortech.2005.11.013.   DOI
2 Babuponnusami, A. and Muthukumar, K. (2014), "A review on Fenton and improvements to the Fenton process for wastewater treatment", J. Environ. Chem. Eng., 2(1), 557-572. https://doi.org/10.1016/j.jece.2013.10.011.   DOI
3 Bandala, E.R., Tiro, J.B., Lujan, M., Camargo, F.J., Sanchez-Salas, J.L., Reyna, S. and Torres, L.G. (2013), "Petrochemical effluent treatment using natural coagulants and an aerobic biofilter", Adv. Environ. Res., 2(3), 229-243. http://doi.org/10.12989/aer.2013.2.3.229.   DOI
4 Barbusinski, K. and Filipek, K. (2000), "Aerobic sludge digestion in the presence of chemical oxidizing agents part II. Fenton's reagent", Pol. J. Environ. Stud., 9(3), 145-149.
5 Bello, M.M., Raman, A.A.A. and Asghar, A. (2019), "A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment", Process Saf. Environ. Protect., 126,119-140. https://doi.org/10.1016/j.psep.2019.03.028.   DOI
6 Bielski, B.H., Cabelli, D.E., Arudi, R.L. and Ross, A.B. (1985), "Reactivity of HO2/O2 radicals in aqueous solution", J. Phys. Chem. Ref. Data, 14(4), 1041-1100. https://doi.org/10.1063/1.555739.   DOI
7 Ghaneian, M.T., Ehrampoush, M.H., Jasemizad, T., Kheirkha, M., Amraei, R. and Sahlabadi, F. (2013), "The effect of nitrate as a radical scavenger for the removal of humic acid from aqueous solutions by electron beam irradiation", J. Commun. Health Res., 1(3), 134-143. http://jhr.ssu.ac.ir/article-1-68-en.html.
8 Salimi, M., Esrafili, A., Gholami, M., Jafari, A.J., Kalantary, R.R., Farzadkia, M. and Sobhi, H.R. (2017), "Contaminants of emerging concern: A review of new approach in AOP technologies", Environ. Monit. Assess., 189(8), 414. https://doi.org/10.1007/s10661-017-6097-x.   DOI
9 Sarmento, A.P., Borges, A.C., de Matos, A.T. and Romualdo, L.L. (2018), "Humic acid degradation by fenton-like process using Fe2+ and Mn4+", Water Pract. Technol., 13(2), 388-399. https://doi.org/10.2166/wpt.2018.048.   DOI
10 Schwarzbauer, J., Heim, S., Brinker, S. and Littke, R. (2002), "Occurrence and alteration of organic contaminants in seepage and leakage water from a waste deposit landfill", Water Res., 36(9), 2275-2287. https://doi.org/10.1016/S0043-1354(01)00452-3.   DOI
11 Serra, A., Domenech, X., Brillas, E. and Peral, J. (2011), "Life cycle assessment of solar photo-Fenton and solar photoelectro-Fenton processes used for the degradation of aqueous α-methylphenylglycine", J. Environ. Monitor., 13(1), 167-174. https://doi.org/10.1039/C0EM00552E.   DOI
12 Liu, J., Wu, J.Y., Kang, C.L., Peng, F., Liu, H.F., Yang, T. and Wang, H.L. (2013), "Photo-Fenton effect of 4-chlorophenol in ice", J. Hazard. Mater., 261, 500-511. https://doi.org/10.1016/j.jhazmat.2013.07.040.   DOI
13 Lin, S.H. and Chang, C.C. (2000), "Treatment of landfill leachate by combined electro-Fenton oxidation and sequencing batch reactor method", Water Res., 34(17), 4243-4249. https://doi.org/10.1016/S0043-1354(00)00185-8.   DOI
14 Lin, S.H. and Lo, C.C. (1997), "Fenton process for treatment of desizing wastewater", Water Res, 31(8), 2050-2056. https://doi.org/10.1016/S0043-1354(97)00024-9.   DOI
15 Lipczynska-Kochany, E. and Kochany, J. (2008), "Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH", Chemosphere, 73(5), 745-750. https://doi.org/10.1016/j.chemosphere.2008.06.028.   DOI
16 Lopez, A., Pagano, M., Volpe, A. and Di Pinto, A.C. (2004), "Fenton's pre-treatment of mature landfill leachate", Chemosphere, 54(7), 1005-1010. https://doi.org/10.1016/j.chemosphere.2003.09.015.   DOI
17 Lucking, F., Koser, H., Jank, M. and Ritter, A. (1998), "Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution", Water Res., 32(9), 2607-2614. https://doi.org/10.1016/S0043-1354(98)00016-5.   DOI
18 Mahtab, M.S., Islam, D.T. and Farooqi, I.H. (2020), "Optimization of the process variables for landfill leachate treatment using Fenton based advanced oxidation technique", Eng. Sci. Technol., 24(2), 428-435. https://doi.org/10.1016/j.jestch.2020.08.013.   DOI
19 Mahtab, M.S. and Farooqi, I.H. (2020), "UV-TiO2 process for landfill leachate treatment: Optimization by response surface methodology". Int. J. Res. Eng. Appl. Manage., 5(12), 14-18. https://doi.org/10.35291/2454-9150.2020.0160.   DOI
20 Gligorovski, S., Strekowski, R., Barbati, S. and Vione, D. (2015), "Environmental implications of hydroxyl radicals (• OH)", Chem. Rev., 115(24), 13051-13092. https://doi.org/10.1021/cr500310b.   DOI
21 Gogate, P.R. (2008), "Treatment of wastewater streams containing phenolic compounds using hybrid techniques based on cavitation: A review of the current status and the way forward", Ultrason. Sonochem., 15(1), 1-15. https://doi.org/10.1016/j.ultsonch.2007.04.007.   DOI
22 Gogate, P.R. and Pandit, A.B. (2004), "A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions", Adv. Environ. Res., 8(3-4), 501-551. https://doi.org/10.1016/S1093-0191(03)00032-7.   DOI
23 Guo, J.S., Abbas, A.A., Chen, Y.P., Liu, Z.P., Fang, F. and Chen, P. (2010), "Treatment of landfill leachate using a combined stripping, Fenton, SBR, and coagulation process", J. Hazard. Mater., 178(1-3), 699-705.https://doi.org/10.1016/j.jhazmat.2010.01.144.   DOI
24 Hamza, R.A., Iorhemen, O.T. and Tay, J.H. (2016), "Anaerobic-aerobic granular system for high-strength wastewater treatment in lagoons", Adv. Environ. Res, 5(3), 169-178. http://doi.org/10.12989/aer.2016.5.3.169.   DOI
25 He, H. and Zhou, Z. (2017), "Electro-Fenton process for water and wastewater treatment", Crit. Rev. Env. Sci. Tec., 47(21), 2100-2131. https://doi.org/10.1016/j.jes.2015.12.003.   DOI
26 Pieczykolan, B., Plonka, I., Barbusinski, K. and Amalio-Kosel, M. (2013), "Comparison of landfill leachate treatment efficiency using the advanced oxidation processes", Archives Environ. Protection, 39(2), 107-115. https://doi.org/10.2478/aep-2013-0016.   DOI
27 Pala, A. and Erden, G. (2004), "Chemical pretreatment of landfill leachate discharged into municipal biological treatment systems", Environ. Eng. Sci., 21(5), 549-557. https://doi.org/10.1089/ees.2004.21.549.   DOI
28 Perez, J.A.S., Sanchez, I.M.R., Carra, I., Reina, A.C., Lopez, J.L.C. and Malato, S. (2013), "Economic evaluation of a combined photo-Fenton/MBR process using pesticides as model pollutant. Factors affecting costs", J. Hazard. Mater., 244, 195-203. https://doi.org/10.1016/j.jhazmat.2012.11.015.   DOI
29 Petrovic, M., Radjenovic, J. and Barcelo, D. (2011), "Advanced oxidation processes (AOPs) applied for wastewater and drinking water treatment. Elimination of pharmaceuticals", Holistic Approach Environ., 1(2), 63-74.
30 Pignatello, J.J. (1992), "Dark and photoassisted iron (3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide", Environ. Sci. Technol., 26(5), 944-951. https://doi.org/10.1021/es00029a012.   DOI
31 Pignatello, J.J., Oliveros, E. and MacKay, A. (2006), "Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry", Crit. Rev. Env. Sci. Technol., 36(1), 1-84. https://doi.org/10.1080/10643380500326564.   DOI
32 Pliego, G., Xekoukoulotakis, N., Venieri, D., Zazo, J.A., Casas, J.A., Rodriguez, J.J. and Mantzavinos, D. (2014), "Complete degradation of the persistent anti‐depressant sertraline in aqueous solution by solar photo‐Fenton oxidation". J. Chem. Technol. Biotechnol., 89(6), 814-818. https://doi.org/10.1002/jctb.4314.   DOI
33 Zepp, R.G., Faust, B.C. and Hoigne, J. (1992), "Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron (II) with hydrogen peroxide: The photo-Fenton reaction", Environ. Sci. Technol., 26(2), 313-319. https://doi.org/10.1021/es00026a011.   DOI
34 Yu, F., Zhou, M. and Yu, X. (2015), "Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration", Electrochim. Acta, 163, 182-189. https://doi.org/10.1016/j.electacta.2015.02.166.   DOI
35 Zazo, J.A., Casas, J.A., Mohedano, A.F., Gilarranz, M.A. and Rodriguez, J.J. (2005), "Chemical pathway and kinetics of phenol oxidation by Fenton's reagent", Environ. Sci. Technol., 39(23), 9295-9302. https://doi.org/10.1021/es050452h.   DOI
36 Zazouli, M.A., Yousefi, Z., Eslami, A. and Ardebilian, M.B. (2012), "Municipal solid waste landfill leachate treatment by fenton, photo-Fenton and Fenton-like processes: Effect of some variables", Iran. J. Environ. Heal. Sci. Eng., 9(1), 3. https://doi.org/10.1186/1735-2746-9-3.   DOI
37 Zha, F.G., Yao, D.X., Hu, Y.B., Gao, L.M. and Wang, X.M. (2016), "Integration of US/Fe2+ and photoFenton in sequencing for degradation of landfill leachate", Water Sci. Technol., 73(2), 260-266. https://doi.org/10.2166/wst.2015.487.   DOI
38 Zhang, H., Zhang, D. and Zhou, J. (2006), "Removal of COD from landfill leachate by electro-Fenton method", J. Hazard. Mater., 135(1-3), 106-111. https://doi.org/10.1016/j.jhazmat.2005.11.025.   DOI
39 Zhang, M.H., Dong, H., Zhao, L., Wang, D.X. and Meng, D. (2019), "A review on Fenton process for organic wastewater treatment based on optimization perspective", Sci. Total Environ., 670, 110-121. https://doi.org/10.1016/j.scitotenv.2019.03.180.   DOI
40 Kavitha, V. and Palanivelu, K. (2005), "Destruction of cresols by Fenton oxidation process", Water Res., 39(13), 3062-3072. https://doi.org/10.1016/j.watres.2005.05.011.   DOI
41 Khan, A.H., Aziz, H.A., Khan, N.A., Hasan, M.A., Ahmed, S., Farooqi, I.H. and Mahtab, M.S. (2021a), "Impact, disease outbreak and the eco-hazards associated with pharmaceutical residues: A Critical review", Int. J. Environ. Sci. Technol., 1-12. https://doi.org/10.1007/s13762-021-03158-9.   DOI
42 Khan, S.U., Mahtab, M.S. and Farooqi, I.H. (2021b), "Enhanced lead (II) removal with low energy consumption in an electrocoagulation column employing concentric electrodes: Process optimisation by RSM using CCD", Int. J. Environ. An. Ch., 1-18. https://doi.org/10.1080/03067319.2021.1873304.   DOI
43 Kim, J.S., Kim, H.Y., Won, C.H. and Kim, J.G. (2001), "Treatment of leachate produced in stabilized landfills by coagulation and Fenton oxidation process", J. Chin. Inst. Chem. Eng., 32(5), 425-429.
44 Kim, S.M. and Vogelpohl, A. (1998), "Degradation of organic pollutants by the photo‐Fenton‐process", Chem. Eng. Technol. Industr. Chem. Plant Equip. Process Eng. Biotechnol., 21(2),187-191. https://doi.org/10.1002/(SICI)1521-4125(199802)21:2%3C187::AID-CEAT187%3E3.0.CO;2-H.   DOI
45 Kim, S.M., Geissen, S.U. and Vogelpohl, A. (1997), "Landfill leachate treatment by a photoassisted Fenton reaction", Water Sci. Technol., 35(4), 239-248.https://doi.org/10.1016/S0273-1223(97)00031-0.   DOI
46 Kim, Y.K. and Huh, I.R. (1997), "Enhancing biological treatability of landfill leachate by chemical oxidation", Environ. Eng. Sci., 14(1), 73-79. https://doi.org/10.1089/ees.1997.14.73.   DOI
47 De Laat, J., Gallard, H., Ancelin, S. and Legube, B. (1999), "Comparative study of the oxidation of atrazine and acetone by H2O2/UV, Fe (III)/UV, Fe (III)/ H2O2/UV and Fe (II) or Fe (III)/H2O2", Chemosphere, 39(15), 2693-2706. https://doi.org/10.1016/S0045-6535(99)00204-0.   DOI
48 De Dios, M.A .F., del Campo, A.G., Fernandez, F.J., Rodrigo, M., Pazos, M. and Sanroman, M.A . (2013), "Bacterial-fungal interactions enhance power generation in microbial fuel cells and drive dye decolourisation by an ex situ and in situ electro-Fenton process", Bioresource Technol., 148, 39-46. https://doi.org/10.1016/j.biortech.2013.08.084.   DOI
49 De Heredia, J.B., Torregrosa, J., Dominguez, J.R. and Peres, J.A. (2001), "Kinetic model for phenolic compound oxidation by Fenton's reagent", Chemosphere, 45(1), 85-90. https://doi.org/10.1016/S0045-6535(01)00056-X.   DOI
50 De Laat, J., Dao, Y.H., El Najjar, N.H. and Daou, C. (2011), "Effect of some parameters on the rate of the catalysed decomposition of hydrogen peroxide by iron (III)-nitrilotriacetate in water", Water Res., 45(17), 5654-5664. https://doi.org/10.1016/j.watres.2011.08.028.   DOI
51 De Morais, J.L. and Zamora, P.P. (2005), "Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates", J. Hazard. Mater., 123(1-3), 181-186. https://doi.org/10.1016/j.jhazmat.2005.03.041.   DOI
52 Deng, Y. (2007), "Physical and oxidative removal of organics during Fenton treatment of mature municipal landfill leachate", J. Hazard. Mater., 146(1-2), 334-340. https://doi.org/10.1016/j.jhazmat.2006.12.026.   DOI
53 Deng, Y. (2009), "Advanced oxidation processes (AOPs) for reduction of organic pollutants in landfill leachate: A review", Int. J. Environ. Waste Manage., 4(3-4), 366-384. https://doi.org/10.1504/IJEWM.2009.027402.   DOI
54 Praveen, V. and Sunil, B.M. (2016), "Potential use of waste rubber shreds in drainage layer of landfills-An experimental study", Adv. Environ. Res., 5(3), 201-211. http://doi.org/10.12989/aer.2016.5.3.201.   DOI
55 Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baun, A., Ledin, A. and Christensen, T.H. (2002), "Present and long-term composition of MSW landfill leachate: A review", Crit. Rev. Env. Sci. Tec, 32(4), 297-336. https://doi.org/10.1080/10643380290813462.   DOI
56 Pliego, G., Zazo, J.A., Garcia-Munoz, P., Munoz, M., Casas, J.A. and Rodriguez, J.J. (2015), "Trends in the intensification of the Fenton process for wastewater treatment: An overview", Critical Rev. Environ. Sci. Technol., 45(24), 2611-2692.https://doi.org/10.1080/10643389.2015.1025646.   DOI
57 Poblete, R. and Perez, N. (2020), "Use of sawdust as pretreatment of photo-Fenton process in the depuration of landfill leachate", J. Environ. Manage., 253, 109697. https://doi.org/10.1016/j.jenvman.2019.109697.   DOI
58 Pouran, S.R., Aziz, A.A. and Daud, W.M.A.W. (2015), "Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters", J. Industr. Eng. Chem., 21, 53-69. https://doi.org/10.1016/j.jiec.2014.05.005.   DOI
59 Pouran, S.R., Raman, A.A.A. and Daud, W.M.A.W. (2014), "Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions", J. Clean. Prod., 64, 24-35. https://doi.org/10.1016/j.jclepro.2013.09.013.   DOI
60 Mahtab, M.S., Farooqi, I.H. and Khursheed, A. (2021), "Zero Fenton sludge discharge: A review on reuse approach during wastewater treatment by the advanced oxidation process", Int. J. Environ. Sci. Technol., 1-14. https://doi.org/10.1007/s13762-020-03121-0.   DOI
61 Malato, S., Fernandez-Ibanez, P., Maldonado, M.I., Oller, I., Polo-Lopez, M.I. and Pichat, P. (2013), Solar Photocatalytic Pilot Plants: Commercially Available Reactors, in Photocatalysis and Water Purification: From Fundamentals to Recent Applications, John Wiley and Sons, Inc., U.S.A.
62 Wang, N., Zheng, T., Zhang, G. and Wang, P. (2016), "A review on Fenton-like processes for organic wastewater treatment", J. Environ. Chem. Eng., 4(1), 762-787. https://doi.org/10.1016/j.jece.2015.12.016.   DOI
63 Biglarijoo, N., Mirbagheri, S. A., Ehteshami, M. and Ghaznavi, S.M. (2016), "Optimization of Fenton process using response surface methodology and analytic hierarchy process for landfill leachate treatment", Process Saf. Environ. Protect., 104, 150-160. https://doi.org/10.1016/j.psep.2016.08.019.   DOI
64 Yang, Y., Jiang, J., Lu, X., Ma, J. and Liu, Y. (2015), "Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: A novel advanced oxidation process", Environ. Sci. Technol., 49(12), 7330-7339. https://doi.org/10.1021/es506362e.   DOI
65 Yilmaz, T., Aygun, A., Berktay, A. and Nas, B. (2010), "Removal of COD and colour from young municipal landfill leachate by Fenton process", Environ. Technol., 31(14), 1635-1640. https://doi.org/10.1080/09593330.2010.494692.   DOI
66 Villegas-Guzman, P., Giannakis, S., Rtimi, S., Grandjean, D., Bensimon, M., De Alencastro, L.F. and Pulgarin, C. (2017a), "A green solar photo-Fenton process for the elimination of bacteria and micropollutants in municipal wastewater treatment using mineral iron and natural organic acids", Appl. Catal. B-Environ., 219, 538-549. https://doi.org/10.1016/j.apcatb.2017.07.066.   DOI
67 Villegas-Guzman, P., Giannakis, S., Torres-Palma, R.A. and Pulgarin, C. (2017b), "Remarkable enhancement of bacterial inactivation in wastewater through promotion of solar photo-Fenton at nearneutral pH by natural organic acids", Appl. Catal. B Environ., 205, 219-227. https://doi.org/10.1016/j.apcatb.2016.12.021.   DOI
68 Kochany, J. and Lipczynska-Kochany, E. (2009), "Utilization of landfill leachate parameters for pretreatment by Fenton reaction and struvite precipitation—a comparative study", J. Hazard. Mater., 166(1), 248-254. https://doi.org/10.1016/j.jhazmat.2008.11.017.   DOI
69 Blanco, J., Malato, S., Milow, B., Maldonado, M.I., Fallmann, H., Krutzler, T. and Bauer, R. (1999), "Techno-economical assessment of solar detoxification systems with compound parabolic collectors", J. Physique IV, 9(PR3), Pr3-259. https://doi.org/10.1051/jp4:1999339.   DOI
70 Boye, B., Dieng, M.M. and Brillas, E. (2003), "Anodic oxidation, electro-Fenton and photoelectro-Fenton treatments of 2, 4, 5-trichlorophenoxyacetic acid", J. Electroanal. Chem., 557, 135-146. https://doi.org/10.1016/S0022-0728(03)00366-8.   DOI
71 Kuo, W.S. and Wu, L.N. (2010), "Fenton degradation of 4-chlorophenol contaminated water promoted by solar irradiation", Sol. Energy, 84(1), 59-65. https://doi.org/10.1016/j.solener.2009.10.006.   DOI
72 Lau, I.W., Wang, P. and Fang, H.H. (2001), "Organic removal of anaerobically treated leachate by Fenton coagulation", J. Environ. Eng., 127(7), 666-669. https://doi.org/10.1061/(ASCE)0733-9372(2001)127:7(666).   DOI
73 Lau, I.W., Wang, P., Chiu, S.S. and Fang, H.H. (2002), "Photoassisted Fenton oxidation of refractory organics in UASB-pretreated leachate", J. Environ. Sci., 14(3), 388-392.   DOI
74 Legrini, O., Oliveros, E. and Braun, A.M. (1993), "Photochemical processes for water treatment", Chem. Rev., 93(2), 671-698. https://doi.org/10.1021/cr00018a003.   DOI
75 He, J., Yang, X., Men, B. and Wang, D. (2016), "Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review", J. Environ. Sci., 39, 97-109. https://doi.org/10.1016/j.jes.2015.12.003.   DOI
76 Deng, Y. and Zhao, R. (2015), "Advanced oxidation processes (AOPs) in wastewater treatment", Curr. Pollut. Reports, 1(3), 167-176. https://doi.org/10.1007/s40726-015-0015-z.   DOI
77 Wang, P., Lau, I.W., Fang, H.H. and Zhou, D. (2000), "Landfill leachate treatment with combined UASB and Fenton coagulation", J. Environ. Sci. Heal. A, 35(10), 1981-1988. https://doi.org/10.1080/10934520009377093.   DOI
78 Wang, P., Zeng, G., Peng, Y., Liu, F., Zhang, C., Huang, B. and Lai, M. (2014), "2, 4, 6-Trichlorophenolpromoted catalytic wet oxidation of humic substances and stabilized landfill leachate", Chem. Eng. J., 247, 216-222. https://doi.org/10.1016/j.cej.2014.03.014.   DOI
79 Deng, Y. and Englehardt, J.D. (2007), "Electrochemical oxidation for landfill leachate treatment", Waste Manage., 27(3), 380-388. https://doi.org/10.1016/j.wasman.2006.02.004.   DOI
80 Di Iaconi, C., Ramadori, R. and Lopez, A. (2006), "Combined biological and chemical degradation for treating a mature municipal landfill leachate", Biochem. Eng. J., 31(2), 118-124. https://doi.org/10.1016/j.bej.2006.06.002.   DOI
81 Drtinova, B., Pospisil, M. and Cuba, V. (2010), "Products of radiation removal of lead from aqueous solutions", Appl. Radiat. Isotopes, 68(4-5), 672-675. https://doi.org/10.1016/j.apradiso.2009.11.076.   DOI
82 ElShafei, G.M.S., Yehia, F.Z., Eshaq, G. and ElMetwally, A.E. (2017), "Enhanced degradation of nonylphenol at neutral pH by ultrasonic assisted-heterogeneous Fenton using nano zero valent metals", Sep. Purif. Technol, 178, 122-129. https://doi.org/10.1016/j.seppur.2017.01.028.   DOI
83 Eren, Z. (2012), "Ultrasound as a basic and auxiliary process for dye remediation: A review", J. Environ. Manage., 104, 127-141. https://doi.org/10.1016/j.jenvman.2012.03.028.   DOI
84 Mohajeri, S., Aziz, H.A., Isa, M.H., Bashir, M.J., Mohajeri, L. and Adlan, M.N. (2010), "Influence of Fenton reagent oxidation on mineralization and decolorization of municipal landfill leachate", J. Environ. Sci. Heal. A, 45(6), 692-698. https://doi.org/10.1080/10934521003648883.   DOI
85 Hu, X., Wang, X., Ban, Y. and Ren, B. (2011), "A comparative study of UV-Fenton, UV-H2O2 and Fenton reaction treatment of landfill leachate", Environ. Technol., 32(9), 945-951. https://doi.org/10.1080/09593330.2010.521953.   DOI
86 Huang, C.P. and Chu, C.S. (2012), "Indirect electrochemical oxidation of chlorophenols in dilute aqueous solutions", J. Environ. Eng., 138(3), 375-385. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000518.   DOI
87 Manenti, D.R., Soares, P.A., Silva, T.F., Modenes, A.N., Espinoza-Quinones, F.R., Bergamasco, R. and Vilar, V.J. (2015), "Performance evaluation of different solar advanced oxidation processes applied to the treatment of a real textile dyeing wastewater", Environ. Sci. Pollut. Res., 22(2), 833-845. https://doi.org/10.1007/s11356-014-2767-1.   DOI
88 Manu, B. and Mahamood, S. (2011), "Enhanced degradation of paracetamol by UV-C supported photo-Fenton process over Fenton oxidation", Water Sci. Technol., 64(12), 2433-2438. https://doi.org/10.2166/wst.2011.804.   DOI
89 Martins, R.C., Lopes, D.V., Quina, M.J. and Quinta-Ferreira, R.M. (2012), "Treatment improvement of urban landfill leachates by Fenton-like process using ZVI", Chem. Eng. J., 192, 219-225. https://doi.org/10.1016/j.cej.2012.03.053.   DOI
90 Mohajeri, S., Aziz, H.A., Zahed, M.A., Mohajeri, L., Bashir, M.J., Aziz, S.Q. and Isa, M.H. (2011), "Multiple responses analysis and modeling of Fenton process for treatment of high strength landfill leachate", Water Sci. Technol., 64(8), 1652-1660. https://doi.org/10.2166/wst.2011.489.   DOI
91 Monteil, H., Pechaud, Y., Oturan, N. and Oturan, M.A. (2019), "A review on efficiency and cost effectiveness of electro-and bio-electro-Fenton processes: Application to the treatment of pharmaceutical pollutants in water", Chem. Eng. J., 376, 119577. https://doi.org/10.1016/j.cej.2018.07.179.   DOI
92 Chatzimarkou, A. and Stalikas, C. (2020), "Adsorptive removal of Estriol from water using graphene-based materials and their magnetite composites: Heterogeneous fenton-like non-toxic degradation on magnetite/graphene oxide", Int. J. Environ. Res., 1-19. https://doi.org/10.1007/s41742-020-00255-4.   DOI
93 Brillas, E., Banos, M.A. and Garrido, J.A. (2003), "Mineralization of herbicide 3, 6-dichloro-2-methoxybenzoic acid in aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton", Electrochim. Acta, 48(12), 1697-1705. https://doi.org/10.1016/S0013-4686(03)00142-7.   DOI
94 Brillas, E., Sires, I. and Oturan, M.A. (2009), "Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry", Chem. Rev., 109(12), 6570-6631. https://doi.org/10.1021/cr900136g.   DOI
95 Calace, N., Liberatori, A., Petronio, B.M. and Pietroletti, M. (2001), "Characteristics of different molecular weight fractions of organic matter in landfill leachate and their role in soil sorption of heavy metals", Environ. Pollut., 113(3), 331-339. https://doi.org/10.1016/S0269-7491(00)00186-X.   DOI
96 Wu, Y., Zhou, S., Ye, X., Zhao, R., and Chen, D. (2011), "Oxidation and coagulation removal of humic acid using Fenton process", Colloid. Surfaces A Physicochem. Eng. Aspects, 379(1-3), 151-156. https://doi.org/10.1016/j.colsurfa.2010.11.057.   DOI
97 Welander, U. and Henrysson, T. (1998), "Physical and chemical treatment of a nitrified leachate from a municipal landfill", Environ. Technol., 19(6),591-599. https://doi.org/10.1080/09593331908616715.   DOI
98 Wiszniowski, J., Robert, D., Surmacz-Gorska, J., Miksch, K., Malato, S. and Weber, J.V. (2004), "Solar photocatalytic degradation of humic acids as a model of organic compounds of landfill leachate in pilot-plant experiments: Influence of inorganic salts", Appl. Catal. B Environ., 53(2), 127-137. https://doi.org/10.1016/j.apcatb.2004.04.017.   DOI
99 Wu, C., Liu, X., Wei, D., Fan, J. and Wang, L. (2001), "Photosonochemical degradation of phenol in water", Water Res., 35(16), 3927-3933. https://doi.org/10.1016/S0043-1354(01)00133-6.   DOI
100 Xu, J., Long, Y., Shen, D., Feng, H. and Chen, T. (2017), "Optimization of Fenton treatment process for degradation of refractory organics in pre-coagulated leachate membrane concentrates", J. Hazard. Mater., 323, 674-680. https://doi.org/10.1016/j.jhazmat.2016.10.031.   DOI
101 Xu, X.R., Li, X.Y., Li, X.Z. and Li, H.B. (2009), "Degradation of melatonin by UV, UV/H2O2, Fe2+/H2O2 and UV/Fe2+/H2O2 processes", Sep. Purif. Technol., 68(2), 261-266. https://doi.org/10.1016/j.seppur.2009.05.013.   DOI
102 Husain Khan, A., Abdul Aziz, H., Khan, N.A., Ahmed, S., Mehtab, M.S., Vambol, S. and Islam, S. (2020), "Pharmaceuticals of emerging concern in hospital wastewater: removal of Ibuprofen and Ofloxacin drugs using MBBR method", Int. J. Environ. An. Ch., 1-15. https://doi.org/10.1080/03067319.2020.1855333.   DOI
103 Moradi, M. and Ghanbari, F. (2014), "Application of response surface method for coagulation process in leachate treatment as pretreatment for Fenton process: Biodegradability improvement", J. Water Process Eng., 4, 67-73. https://doi.org/10.1016/j.jwpe.2014.09.002.   DOI
104 Cifci, D.I. and Meric, S. (2020), "Synthesis of magnetite iron pumice composite for heterogeneous Fentonlike oxidation of dyes", Adv. Environ. Res., 9(3), 161-173. https://doi.org/10.12989/aer.2020.9.3.161.   DOI
105 Clarizia, L., Russo, D., Di Somma, I., Marotta, R. and Andreozzi, R. (2017), "Homogeneous photo-Fenton processes at near neutral pH: a review", Appl. Catal. B Environ., 209, 358-371. http://dx.doi.org/10.1016/j.apcatb.2017.03.011.   DOI
106 Cortez, S., Teixeira, P., Oliveira, R. and Mota, M. (2010), "Fenton's oxidation as post-treatment of a mature municipal landfill leachate", Int. J. Environ. Sci. Eng., 2(1), 40-43.
107 Huang, C.P., Dong, C. and Tang, Z. (1993), "Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment", Waste Manage., 13(5-7), 361-377. https://doi.org/10.1016/0956-053X(93)90070-D.   DOI
108 Hussain, M., Mahtab, M.S. and Farooqi, I.H. (2020), "The applications of ozone-based advanced oxidation processes for wastewater treatment: A review", Adv. Environ. Res., 9(3), 191-214. http://doi.org/10.12989/aer.2020.9.3.191.   DOI
109 Huston, P.L. and Pignatello, J.J. (1999), "Degradation of selected pesticide active ingredients and commercial formulations in water by the photo-assisted Fenton reaction", Water Res., 33(5), 1238-1246. https://doi.org/10.1016/S0043-1354(98)00330-3.   DOI
110 Sharma, A., Verma, M. and Haritash, A.K. (2016). "Degradation of toxic azo dye (AO7) using Fenton's process", Adv. Environ. Res., 5(3), 189-200. http://doi.org/10.12989/aer.2016.5.3.189.   DOI
111 Jones, C.W. (1999), Applications of Hydrogen Peroxide and Derivatives, Royal Society of Chemistry, London, U.K.
112 Ismail, S. and Tawfik, A. (2016), "Treatment of hazardous landfill leachate using Fenton process followed by a combined (UASB/DHS) system", Water Sci. Technol., 73(7), 1700-1708. https://doi.org/10.2166/wst.2015.655.   DOI
113 Jaafarzadeh Haghighifard, N. A., Jorfi, S., Ahmadi, M., Mirali, S. and Kujlu, R. (2016), "Treatment of mature landfill leachate by chemical precipitation and Fenton advanced oxidation process", Environ. Health Eng. Manage. J. Winter, 3(1), 35-40.
114 Jain, B., Singh, A.K., Kim, H., Lichtfouse, E. and Sharma, V.K. (2018), "Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes", Environ. Chem. Lett., 16(3), 947-967. https://doi.org/10.1007/s10311-018-0738-3.   DOI
115 Sun, Y. and Pignatello, J.J. (1992), "Chemical treatment of pesticide wastes. Evaluation of iron (III) chelates for catalytic hydrogen peroxide oxidation of 2, 4-D at circumneutral pH", J. Agr. Food Chem., 40(2), 322-327. https://doi.org/10.1021/jf00014a031.   DOI
116 Sharma, S., Ruparelia, J.P. and Patel, M.L. (2011), "A general review on advanced oxidation processes for waste water treatment", Inst. Technol. Nirma Univ. Ahmedabad, 481, 08-10.
117 Sruthi, T., Gandhimathi, R., Ramesh, S.T. and Nidheesh, P.V. (2018), "Stabilized landfill leachate treatment using heterogeneous Fenton and electro-Fenton processes", Chemosphere, 210, 38-43. https://doi.org/10.1016/j.chemosphere.2018.06.172.   DOI
118 Stuglik, Z. and PawelZagorski, Z. (1981), "Pulse radiolysis of neutral iron (II) solutions: oxidation of ferrous ions by OH radicals", Radiat. Phys. Chem., 17(4), 229-233. https://doi.org/10.1016/0146-5724(81)90336-8.   DOI
119 Suresh, A., Minimol Pieus, T. and Soloman, P.A. (2016), "Treatment of Landfill Leachate by membrane bioreactor and electro-fenton process", Int. J. Eng. Sci. Res. Technol., 5(8), 689-697.
120 Szpyrkowicz, L., Juzzolino, C. and Kaul, S.N. (2001), "A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and Fenton reagent", Water Res., 35(9), 2129-2136. https://doi.org/10.1016/S0043-1354(00)00487-5.   DOI
121 Leifeld, V., Dos Santos, T.P.M., Zelinski, D.W. and Igarashi-Mafra, L. (2018), "Ferrous ions reused as catalysts in Fenton-like reactions for remediation of agro-food industrial wastewater", J. Environ. Manage., 222, 284-292. https://doi.org/10.1016/j.jenvman.2018.05.087.   DOI
122 Muangthai, I., Ratanatamsakul, C. and Lu, M.C. (2010), "Removal of 2, 4-dichlorophenol by fluidized-bed Fenton process", Sust. Environ. Res., 20(5), 325.
123 Neyens, E. and Baeyens, J. (2003), "A review of classic Fenton's peroxidation as an advanced oxidation technique", J. Hazard. Mater., 98(1-3), 33-50. https://doi.org/10.1016/S0304-3894(02)00282-0.   DOI
124 Niveditha, S.V. and Gandhimathi, R. (2020), "Mineralization of stabilized landfill leachate by heterogeneous Fenton process with RSM optimization", Sep. Sci. Technol., 1-10. https://doi.org/10.1080/01496395.2020.1725573.   DOI
125 Li, J., Mailhot, G., Wu, F. and Deng, N. (2010a), "Photochemical efficiency of Fe (III)-EDDS complex: OH radical production and 17β-estradiol degradation", J. Photoch. Photobio. A., 212(1), 1-7. https://doi.org/10.1016/j.jphotochem.2010.03.001.   DOI
126 Li, W., Zhou, Q. and Hua, T. (2010), "Removal of organic matter from landfill leachate by advanced oxidation processes: A review", Int. J. Chem. Eng. https://doi.org/10.1155/2010/270532.   DOI
127 Ting, W.P., Lu, M.C. and Huang, Y.H. (2008), "The reactor design and comparison of Fenton, electroFenton and photoelectro-Fenton processes for mineralization of benzene sulfonic acid (BSA)", J. Hazard. Mater., 156(1-3), 421-427. https://doi.org/10.1016/j.jhazmat.2007.12.031.   DOI
128 Da Costa, F.M., Daflon, S.D.A., Bila, D.M., Da Fonseca, F.V. and Campos, J.C. (2018), "Evaluation of the biodegradability and toxicity of landfill leachates after pretreatment using advanced oxidative processes", Waste Manage., 76, 606-613. https://doi.org/10.1016/j.wasman.2018.02.030.   DOI
129 Dasgupta, B., Yadav, V.L. and Mondal, M.K. (2013), "Seasonal characterization and present status of municipal solid waste (MSW) management in Varanasi, India", Adv. Environ. Res., 2(1), 51-60. http://doi.org/10.12989/aer.2013.2.1.051.   DOI
130 Amor, C., De Torres-Socias, E., Peres, J.A., Maldonado, M.I., Oller, I., Malato, S. and Lucas, M.S. (2015), "Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photoFenton processes", J. Hazard. Mater, 286, 261-268. https://doi.org/10.1016/j.jhazmat.2014.12.036.   DOI
131 Tirado, L., Gokkus, O., Brillas, E. and Sires, I. (2018), "Treatment of cheese whey wastewater by combined electrochemical processes.", J. Appl. Electrochem., 48(12), 1307-1319. https://doi.org/10.1007/s10800-018-1218-y.   DOI
132 Ataei, A., Mirsaeed, M.G., Choi, J.K. and Lashkarboluki, R. (2015), "Application of ozone treatment in cooling water systems for energy and chemical conservation", Adv. Environ. Res., 4(3), 155-172. http://doi.org/10.12989/aer.2015.4.3.155.   DOI
133 Li, Y., Bachas, L.G. and Bhattacharyya, D. (2007), "Selected chloro-organic detoxifications by polychelate (poly (acrylic acid)) and citrate-based Fenton reaction at neutral pH environment", Ind. Eng. Chem. Res., 46(24), 7984-7992. https://doi.org/10.1021/ie070393b.   DOI
134 Li, Y.C., Bachas, L.G. and Bhattacharyya, D. (2005), "Kinetics studies of trichlorophenol destruction by chelate-based Fenton reaction", Environ. Eng. Sci., 22(6), 756-771. https://doi.org/10.1089/ees.2005.22.756.   DOI
135 Artiola‐Fortuny, J. and Fuller, W.H. (1982), "Humic substances in landfill leachates: I. Humic acid extraction and identification", J. Environ. Qual., 11(4), 663-669. https://doi.org/10.2134/jeq1982.00472425001100040021x.   DOI
136 Ahmadi, M., Ramavandi, B. and Sahebi, S. (2015), "Efficient degradation of a biorecalcitrant pollutant from wastewater using a fluidized catalyst-bed reactor", Chem. Eng. Commun., 202(8), 1118-1129. https://doi.org/10.1080/00986445.2014.907567.   DOI
137 Altin, A. (2008), "An alternative type of photoelectro-Fenton process for the treatment of landfill leachate", Sep. Purif. Technol., 61(3), 391-397. https://doi.org/10.1016/j.seppur.2007.12.004.   DOI
138 Kanaani, F., Tavakoli, B., Pendashteh, A.R., Chaibakhsh, N. and Ostovar, F. (2019), "Coagulation/Fenton oxidation combined treatment of compost leachate using quince seed mucilage as an effective biocoagulant", Environ. Technol., 1-10. https://doi.org/10.1080/09593330.2019.1635653.   DOI
139 Kang, Y.W. and Hwang, K.Y. (2000), "Effects of reaction conditions on the oxidation efficiency in the Fenton process", Water Res., 34(10), 2786-2790. https://doi.org/10.1016/S0043-1354(99)00388-7.   DOI
140 Faust, B.C. and Hoigne, J. (1990), "Photolysis of Fe (III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain", Atmos. Environ. Part A. General Topics, 24(1), 79-89. https://doi.org/10.1016/0960-1686(90)90443-Q.   DOI
141 Primo, O., Rueda, A., Rivero, M.J. and Ortiz, I. (2008), "An integrated process, Fenton reaction-ultrafiltration, for the treatment of landfill leachate: Pilot plant operation and analysis", Industr. Eng. Chem. Res., 47(3), 946-952. https://doi.org/10.1021/ie071111a.   DOI
142 Varank, G., Guvenc, S.Y., Dincer, K. and Demir, A. (2020), "Concentrated leachate treatment by Electro-Fenton and Electro-Persulfate processes using central composite design", Int. J. Environ. Res., 1-23. https://doi.org/10.1007/s41742-020-00269-y.   DOI
143 Verma, M. and Haritash, A.K. (2020), "Review of advanced oxidation processes (AOPs) for treatment of pharmaceutical wastewater", Adv. Environ. Res., 9(1), 1-17. https://doi.org/10.12989/aer.2020.9.1.001.   DOI
144 Vilar, V.J., Moreira, J.M., Fonseca, A., Saraiva, I. and Boaventura, R.A. (2012), "Application of Fenton and solar photo-Fenton processes to the treatment of a sanitary landfill leachate in a pilot plant with CPCs", J. Adv. Oxid. Technol., 15(1), 107-116. https://doi.org/10.1515/jaots-2012-0112.   DOI
145 Garrido-Ramirez, E.G., Theng, B.K.G. and Mora, M.L. (2010), "Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions—a review", Appl. Clay Sci., 47(3-4), 182-192. https://doi.org/10.1016/j.clay.2009.11.044.   DOI
146 Fernandes, L., Lucas, M.S., Maldonado, M.I., Oller, I. and Sampaio, A. (2014), "Treatment of pulp mill wastewater by Cryptococcus podzolicus and solar photo-Fenton: A case study", Chem. Eng. J., 245, 158-165. https://doi.org/10.1016/j.cej.2014.02.043.   DOI
147 Gallard, H., de Laat, J. and Legube, B. (1998), "Effect of pH on the oxidation rate of organic compounds by Fe-II/H2O2. Mechanisms and simulation", New J. Chem., 22(3), 263-268.   DOI
148 Gao, M., Zhang, D., Li, W., Chang, J., Lin, Q., Xu, D. and Ma, H. (2016), "Degradation of methylene blue in a heterogeneous Fenton reaction catalyzed by chitosan crosslinked ferrous complex", J. Taiwan Inst. Chem. Eng., 67, 355-361. http://doi.org/10.1016/j.jtice.2016.08.010.   DOI
149 Gau, S.H. and Chang, F.S. (1996), "Improved Fenton method to remove recalcitrant organics in landfill leachate", Water Sci. Technol., 34(7-8), 455-462. https://doi.org/10.1016/S0273-1223(97)81411-4.   DOI
150 Radjenovic, J. and Sedlak, D.L. (2015), "Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water", Environ. Sci. Technol., 49(19), 11292-11302. https://doi.org/10.1021/acs.est.5b02414.   DOI
151 Raji, J.R. and Palanivelu, K. (2016), "Semiconductor coupled solar photo-Fenton's treatment of dyes and textile effluent", Adv. Environ. Res., 5(1), 61-77. http://doi.org/10.12989/aer.2016.5.1.061.   DOI
152 Rathnayake, W.A.P.P. and Herath, G.B.B. (2018), "A review of leachate treatment techniques", Proceedings of the 9th International Conference on Sustainable Built Environment, Sri Lanka, December.
153 Renou, S., Givaudan, J.G., Poulain, S., Dirassouyan, F. and Moulin, P. (2008), "Landfill leachate treatment: Review and opportunity", J. Hazard. Mater., 150(3), 468-493. https://doi.org/10.1016/j.jhazmat.2007.09.077.   DOI
154 Safarzadeh-Amiri, A., Bolton, J.R. and Cater, S.R. (1997), "Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water", Water Res., 31(4), 787-798. https://doi.org/10.1016/S0043-1354(96)00373-9.   DOI
155 Avetta, P., Pensato, A., Minella, M., Malandrino, M., Maurino, V., Minero, C. and Vione, D. (2015), "Activation of persulfate by irradiated magnetite: Implications for the degradation of phenol under heterogeneous photo-Fenton-like conditions", Environ. Sci. Technol., 49(2), 1043-1050. https://doi.org/10.1021/es503741d.   DOI
156 Rothschild, W.G. and Allen, A.O. (1958), "Studies in the radiolysis of ferrous sulfate solutions: III. Air-free solutions at higher pH", Radiat. Res., 8(2), 101-110. https://doi.org/10.2307/3570600.   DOI
157 Rush, J.D. and Bielski, B.H. (1985), "Pulse radiolytic studies of the reaction of perhydroxyl/superoxide O2-with iron (II)/iron (III) ions. The reactivity of HO2/O2-with ferric ions and its implication on the occurrence of the Haber-Weiss reaction", J. Phys. Chem., 89(23), 5062-5066. https://doi.org/10.1021/j100269a035.   DOI