• 제목/요약/키워드: low leakage

검색결과 1,336건 처리시간 0.032초

새로운 적층방법으로 제조된 고품위 비정질/다결정 $BaTiO_3$ 적층박막의 특성과 교류 구동형 박막 전기 발광소자에의 응용 (Characteristics of Amorphous/Polycrystalline $BaTiO_3$ Double Layer Thin Films with High Performance Prepared New Stacking Method and its Application to AC TFEL Device)

  • 송만호;이윤희;한택상;오명환;윤기현
    • 한국세라믹학회지
    • /
    • 제32권7호
    • /
    • pp.761-768
    • /
    • 1995
  • Double layered BaTiO3 thin films with high dielectric constant as well as good insulating property were prepared for the application to low voltage driving thin film electroluminescent (TFEL) device. BaTiO3 thin films were formed by rf-magnetron sputtering technique. Amorphous and polycrystalline BaTiO3 thin films were deposited at the substrate temperatures of room temperature and 55$0^{\circ}C$, respectively. Two kinds of films prepared under these conditions showed high resistivity and high dielectric constant. The figure of merit (=$\varepsilon$r$\times$Eb.d) of polycrystalline BaTiO3 thin film was very high (8.43$\mu$C/$\textrm{cm}^2$). The polycrystalline BaTiO3 showed a substantial amount of leakage current (I), under the high electric field above 0.5 MV/cm. The double layered BaTiO3 thin film, i.e., amorphous BaTiO3 layer coated polycrystalline BaTiO3 thin film, was prepared by the new stacking method and showed very good dielectric and insulating properties. It showed a high dielectric constant fo 95 and leakage current density of 25 nA/$\textrm{cm}^2$ (0.3MV/cm) with the figure of merit of 20$\mu$C/$\textrm{cm}^2$. The leakage current density in the double layered BaTiO3 was much smaller than that in polycrystalline BaTiO3 under the high electric field. The saturated brightness of the devices using double layered BaTiO3 was about 220cd/$m^2$. Threshold voltage of TFEL devices fabricated on double layered BaTiO3 decreased by 50V compared to the EL devices fabricated on amorphous BaTiO3.

  • PDF

$Ta_2O_{5}$ 커패시터 박막의 유전 특성과 열 안정성에 관한 연구 (The Study on Dielectric Property and Thermal Stability of $Ta_2O_{5}$ Thin-films)

  • 김인성;이동윤;송재성;윤무수;박정후
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권5호
    • /
    • pp.185-190
    • /
    • 2002
  • Capacitor material utilized in the downsizing passive devices and dynamic random access memory(DRAM) requires the physical and electrical properties at given area such as capacitor thickness reduction, relative dielectric constant increase, low leakage current and thermal stability. Common capacitor materials, $SiO_2$, $Si_3N_4$, $SiO_2$/$Si_3N_4$,TaN and et al., used until recently have reached their physical limits in their application to several hundred angstrom scale capacitor. $Ta_2O_{5}$ is known to be a good alternative to the existing materials for the capacitor application because of its high dielectric constant (25 ~35), low leakage current and high breakdown strength. Despite the numerous investigations of $Ta_2O_{5}$ material, there have little been established the clear understanding of the annealing effect on capacitance characteristic and conduction mechanism, design and fabrication for $Ta_2O_{5}$ film capacitor. This study presents the structure-property relationship of reactive-sputtered $Ta_2O_{5}$ MIM capacitor structure processed by annealing in a vacuum. X-ray diffraction patterns skewed the existence of amorphous phase in as-deposited condition and the formation of preferentially oriented-$Ta_2O_{5}$ in 670, $700^{\circ}C$ annealing. On 670, $700^{\circ}C$ annealing under the vacuum, the leakage current decrease and the enhanced temperature-capacitance characteristic stability. and the leakage current behavior is stable irrespective of applied electric field. The results states that keeping $Ta_2O_{5}$ annealed at vacuum gives rise to improvement of electrical characteristics in the capacitor by reducing oxygen-vacancy and the broken bond between Ta and O.

적외선열화상에 의한 발전용 밸브 누설명가 연구 (A Study on the Leakage Evaluation for Power Plant Valve Using Infrared Thermography Method)

  • 이상국
    • 비파괴검사학회지
    • /
    • 제30권2호
    • /
    • pp.110-115
    • /
    • 2010
  • 발전용 밸브 내부의 누설은 냉각 기능 상실 및 방사선물질 방출 동 안전계통의 성능 저하와 수많은 에너지 손실 등 발전소 운전에 막대한 손상 및 사고를 초래하게 된다. 본 논문은 신뢰성 높은 진단 방법 개발을 위하여 국내 원자력발전소 2차계통의 누설 발생 또는 내부 부품의 손상이 발생할 수 있는 밸브를 대상으로 현장시험 및 모의누설실험시의 적외선열화상 측정 실험을 수행함으로써 단일계측방식의 불확실성을 제거하고 향후 누설진단에 대한 확대 적용을 도모하고자 하였다. 발전소 현장시험 및 밸브 모의누설시험시의 밸브 누설 상태에 따른 적외선열화상 이미지 측정 실험을 통하여, 적외선열화상 측정 방법은 밸브 누설 상태의 과정을 신속하고 정밀하게 측정 가능하며 향후 많은 종류의 밸브 누설진단에 활용함으로써 누설에 따른 막대한 에너지 손실 및 사고 예방의 유용한 기법으로 확대 적용이 가능할 것으로 생각된다.

초미세 CMOS 공정에서의 스위칭 및 누설전력 억제 SRAM 설계 (Switching and Leakage-Power Suppressed SRAM for Leakage-Dominant Deep-Submicron CMOS Technologies)

  • 최훈대;민경식
    • 대한전자공학회논문지SD
    • /
    • 제43권3호
    • /
    • pp.21-32
    • /
    • 2006
  • 본 논문에서는 누설전력 소비뿐만 아니라 스위칭 전력 소비를 동시에 줄일 수 있는 새로운 저전력 SRAM 회로를 제안한다. 제안된 저전력 SRAM은 대기모드와 쓰기동작에서는 셀의 소스라인 전압을 $V_{SSH}$로 증가시키고 읽기동작에서만 소스라인 전압을 다시 $V_{SS}$가 되도록 동적으로 조절한다. SRAM 셀의 소스라인 전압을 동적으로 조절하면 reverse body-bias 효과, DIBL 효과, 음의 $V_{GS}$ 효과를 이용하여 셀 어레이의 누설전류를 1/100 까지 감소시킬 수 있다. 또한 누설전류를 억제하기 위해 사용된 소스라인 드라이버를 이용하여 SRAM의 쓰기동작에서 비트라인 전압의 스윙 폭을 $V_{DD}-to-V_{SSH}$로 감소시킴으로써 SRAM의 write power를 대폭 감소시킬 수 있고 쓰기동작 중에 있는 셀들의 누설 전류 소비도 동시에 줄일 수 있다. 이를 위해 새로운 write driver를 사용하여 low-swing 쓰기동작 시 성능 감소를 최소화하였다. 누설전력 소비 감소 기법과 스위칭 전력 소비 감소 기법을 동시에 사용함으로써 제안된 SRAM은 특히 미래의 큰 누설전류가 예상되는 70-nm 이하 급 초미세 공정에서 유용할 것으로 예측된다. 70-nm 공정 파라미터를 이용해서 시뮬레이션한 결과 누설전력 소비의 93%와 스위칭 전력 소비의 43%를 줄일 수 있을 것으로 보인다. 본 논문에서 제안된 저전력 SRAM의 유용성과 신뢰성을 검증하기 위해서 $0.35-{\mu}m$ CMOS 공정에서 32x128 bit SRAM이 제작 및 측정되었다. 측정 결과 기존의 SRAM에 비해 스위칭 전력이 30% 적게 소비됨을 확인하였고 사용된 메탈 차폐 레이어로 인해서 $V_{DD}-to-V_{SSH}$ 전압이 약 1.1V 일 때까지 오류 없이 동작함을 관측하였다. 본 논문의 SRAM 스위칭 전력감소는 I/O의 bit width가 증가하면 더욱 더 중요해질 것으로 예상할 수 있다.

Iron Core Design of 3-Phase 40MVA HTS Power Transformer Considering Voltages per Turn

  • Lee, Chan-joo;Seok, Bok-yeol
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제4B권2호
    • /
    • pp.54-58
    • /
    • 2004
  • This paper presents the iron core design method of a high temperature superconducting (HTS) transformer considering voltages per turn (V/T). In this research, solenoid type HTS coils were selected for low voltage (LV) winding and double pancake coils for high voltage (HV) winding, just as in conventional large power transformers. V/T is one of the most fundamental elements used in designing transformers, as it decides the core cross sectional area and the number of primary and secondary winding turns. By controlling the V/T, the core dimension and core loss can be changed diversely. The leakage flux is another serious consideration in core design. The magnetic field perpendicular to the HTS wire causes its critical current to fall rapidly as the magnitude of the field increases slowly. Therefore in the design of iron core as well as superconducting windings, contemplation of leakage flux should be preceded. In this paper, the relationship between the V/T and core loss was observed and also, through computational calculations, the leakage magnetic fields perpendicular to the windings were found and their critical current decrement effects were considered in relation to the core design. The % impedance was calculated by way of the numerical method. Finally, various models were suggested.

애자/피뢰기 모니터링을 위한 유비쿼터스 센서 개발 (Development of a Ubiquitous Sensor for Monitoring Insulators and Lightning Arresters)

  • 길경석;류길수;송재용;김일권;박대원;최수연
    • 한국철도학회논문집
    • /
    • 제10권2호
    • /
    • pp.117-123
    • /
    • 2007
  • In this study, a ubiquitous sensor for condition monitoring of insulators and lightning arresters installed in power distribution lines and electric traction vehicles is presented. The sensor consists of two parts; a leakage current measurement and a lightning surge detection. Measured data are transmitted to a supervisory computer through ZigBee protocol based on IEEE 802.15.4. To detect leakage current, a window type Mn-ZCT is used and a low-noise amplifier with a gain of 60dB is designed, and this can measure leakage current in ranges of $100{\mu}A{\sim}5mA$. A sample-hold (S/H) and a Rogowski coil are injected to analyze the magnitude of surge current in ranges from 100A to 10kA with $8/20{\mu}s$-waveform.

회전하는 터빈 블레이드에서의 열전달 특성 (Detailed Heat Transfer Characteristics on Rotating Turbine Blade)

  • 이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제30권11호
    • /
    • pp.1074-1083
    • /
    • 2006
  • In the present study, the effect of blade rotation on blade heat transfer is investigated by comparing with the heat transfer results for the stationary blade. The experiments are conducted in a low speed annular cascade with a single stage turbine and the turbine stage is composed of sixteen guide vanes and blades. The chord length and the height of the tested blade are 150 mm and about 125 mm, respectively. The blade has a flat tip and the mean tip clearance is 2.5% of the blade chord. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. For the experiments, the inlet Reynolds number is $Re_c=1.5{\times}10^5$, which results in the blade rotation speed of 255.8 rpm. Blade rotation induces a relative motion between the blade and the shroud as well as a periodic variation of incoming flow. Therefore, different heat/mass transfer patterns are observed on the rotating blade, especially near the tip and on the tip. The relative motion reduces the tip leakage flow through the tip gap, which results in the reduction of the tip heat transfer. However, the effect of the tip leakage flow on the blade surface is increased because the tip leakage vortex is formed closer to the surface than the stationary case. The overall heat/mass transfer on the shroud is not affected much by the blade rotation.

입사각 변화에 따른 터빈 블레이드에서의 열전달 특성 변화 (II) - 블레이드 표면 - (Effect of Incidence Angle on Turbine Blade Heat Transfer Characteristics (II) - Blade Surface -)

  • 이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제31권4호
    • /
    • pp.357-366
    • /
    • 2007
  • The present study investigated local heat/mass transfer characteristics on the surface of the rotating turbine blade with various incidence angles. The experiments are conducted in a low speed annular cascade with a single stage turbine. The blade has a flat tip with the mean tip clearance of 2.5% of the blade chord. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. At design condition, the inlet Reynolds number is $Re_c=1.5{\times}10^5$ which results in the blade rotation speed of 255.8 rpm. Also, the effect of off-design condition is examined with various incidence angles between $-15^{\circ}$ and $+7{\circ}$. The results indicated that the incidence angle has significant effects on the blade surface heat transfer. In mid-span region, the laminar separation region on the pressure side is reduced and the laminar flow region on the suction side shrinks with increasing incidence angle. Near the tip, the effect of tip leakage flow increases in span wise and axial directions as the incidence angle decreases because the tip leakage flow is formed near the suction side surface. However, the effect of tip leakage flow is reduced with positive incidence angle.

원자력 증기발생기 결함 세관 보수용 폭발 Plugging에 관한 연구 (A Study on the Explosive Plugging of A Repair for Defective Tube/Tubeplate on the Nuclear Steam Generator)

  • 이병일;심상한;강정윤;이상래
    • 화약ㆍ발파
    • /
    • 제17권4호
    • /
    • pp.18-31
    • /
    • 1999
  • The explosive forming has been used for many year to expand tubes into tubesheets. this process has demonstrated ability to direct carefully the energy of an explosive to expand tubes into tubesheet holes without damaging the tubesheet and without causing the excessive cold work at the tube I.D. that is normally associated with mechanical expansion. The success of explosive tube expansion provided the background for the development of the explosive tube plug. The main results are as follows : (1) The optimum explosives and explosive qualities are PETN, RDX, HMS and about 18~31gr/ft of explosive plugging in nuclear steam generator. (2) Explosive plugging's thickness is 0.9~1.8mm. If groove of 0.4 mm formed in plug outside, For the hydraulic leakage is go up, explosive plugging of formed groove are applicate tube and tubrplate. (3) Sheath is designed on the polyethylene of low density, In thermal impact test of the $430^\circ{C}$, hydraulic leakage is $300kg/cm^2$. (4) About 10~60mm oxide inclusions are existed on the space of explosive plug and tube protect to the leakage.

  • PDF

액체 추진 로켓 터보 펌프용 플로팅 링 실에 대한 해석 및 실험 결과의 비교 연구 (Comparison of Theoretical Analysis with Test Results of Floating Ring Seals for the LRE Turbo Pump)

  • 이용복;안경민;김창호;하태웅
    • 한국유체기계학회 논문집
    • /
    • 제7권6호
    • /
    • pp.21-27
    • /
    • 2004
  • The floating ring seal has an advantage to find the optimum position by itself, which is used in the turbo pump of a liquid rocket. The main purpose of seals is to reduce the leakage. Especially, seals of the turbo pump for the liquid rocket engine are operated under the serious conditions such as high pressure above 10 MPa, very low temperature about $-180^{\circ}C$ and high rotating speed above 25,000 rpm. So, rotordynamic stability is very important for the system stability. In this paper, the leakage and dynamic characteristics of floating ring seals were investigated by a experimental and analytical method. The theoretical results of the leakage performance for the floating ring seal showed much higher than that of experimental results. On the other hand, the results of stiffness and damping characteristics showed similarity each other. As the shaft speed was increasing, the whirl frequency ratio was increased in the experimental results.