• Title/Summary/Keyword: low leakage

Search Result 1,336, Processing Time 0.026 seconds

The Comparative Assessment of Cold Tolerance of Broad-leaved Evergreen Trees by Low Temperature Treatment (저온처리에 따른 국내 상록활엽수종의 내한성 비교 평가)

  • Jin, Eon-Ju;Yoon, Jun Hyuck;Bae, Eun-Ji;Choi, Myung Suk
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.484-492
    • /
    • 2019
  • The aim of the present study was to compare the cold tolerance of seven different types of trees growing in southern Korea to select evergreen broad-leaved trees that can be used as street trees in large land areas experiencing climate change. The trees compared were the thorn tree, Cinnamomum camphora, Camellia japonica, Machilus thunbergii, Dendropanax morbifera, Daphniphyllum macropodum Miq., Quercus glauca Thunb., and Raphiolepis indica. When the trees were subjected to low temperature treatment, their electrolyte elution volume values appeared to increase with the decreases in the treatment temperature. The analysis of the cold tolerance of each type of tree was based on the estimated temperatures in the following order: C. japonica (-11.586℃) > R. indica (-9.348℃) > Q. glauca (-8.719℃) > M. thunbergii (-8.090℃) > D. macropodum (-7.409℃) > D. morbifera (-7.085℃) > C. camphora (-6.995℃). The relative cold tolerance difference found in the seven tree species was more than 5℃, as evaluated previously. In the Lauraceae family, the difference in cold tolerance was more than 2℃, even in the same species. The analysis showed that trees with excellent cold tolerance included Q. glauca Thunb., C. japonica, R. indica, and the thorn tree. This knowledge is required for the evaluation of the possibility of the survival of trees under cold temperature conditions in cities.

Risk Analysis of Ammonia Leak in the Refrigeration Manufacturing Facilities (냉동제조 시설의 암모니아 누출사고 위험 분석)

  • Kang, Su-Jin;Lee, Ik-Mo;Moon, Jin-Young;Chon, Young-Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.1
    • /
    • pp.43-51
    • /
    • 2017
  • Recently, ammonia leak occurred frequently in the domestic refrigeration manufacturing facilities. Ammonia caused great damage to the environment and human health in the event of an accident as combustible gases and toxic gases. After considering the types of ammonia accidents of domestic refrigeration manufacturing facilities and selected accident scenarios and to analyze the risk analysis through Impact range estimates and frequency analysis and there was a need to establish measures to minimize accident damage. In this study, depending on the method of analysis quantitative risk assessment we analyzed the risk of the receiver tank of ammonia system. Scenario analysis conditions were set according to the 'Technical guidelines for the selection of accident scenario' under the chemicals control act and 'Guidelines for chemical process quantitative risk analysis' of center for chemical process safety. The risk estimates were utilized for consequence analysis and frequency analysis by SAFETI program of DNV, event tree analysis methodology and part count methodology. The individual risk of ammonia system was derived as 7.71E-04 / yr, social risk were derived as 1.17E-03 / yr. The derived risk was confirmed to apply as low as reasonably practicable of the national fire protection association and through risk calculation, it can be used as a way to minimize accidents ammonia leakage accident damage.

Implementation of Small Size Dual Band PAM using LTCC Substrates (LTCC를 이용한 Small Size Dual Band PAM의 구현)

  • Shin, Yong-Kil;Chung, Hyun-Chul;Lee, Joon-Geun;Kim, Dong-Su;Yoo, Jo-Shua;Yoo, Myong-Jae;Park, Seong-Dae;Lee, Woo-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.357-358
    • /
    • 2005
  • Compact power amplifier modules (PAM) for WCDMA/KPCS and GSM/WCDMA dual-band applications based on multilayer low temperature co-fired ceramic (LTCC) substrates are presented in this paper. The proposed modules are composed of an InGaP/GaAs HBT PAs on top of the LTCC substrates and passive components such as RF chokes and capacitors which are embedded in the substrates. The overall size of the modules is less than 6mm $\times$ 6mm $\times$ 0.8mm. The measured result shows that the PAM delivers a power of 28 dBm with a power added efficiency (PAE) of more than 30 % at KPCS band. The adjacent-channel power ratio (ACPR) at 1.25-MHz and 2.25-MHz offset is -44dBc/30kHz and -60dBc/30kHz, respectively, at 28-dBm output power. Also, the PAM for WCDMA band exhibits an output power of 27 dBm and 32-dB gain at 1.95 GHz with a 3.4-V supply. The adjacent-channel leakage ratio (ACLR) at 5-MHz and 10-MHz offset is -37.5dBc/3.84MHz and -48dBc/3.84MHz, respectively. The measured result of the GSM PAM shows an output power of 33.4 dBm and a power gain of 30.4 dB at 900MHz with a 3.5V supply. The corresponding power added efficiency (PAE) is more than 52.6 %.

  • PDF

Fruit Quality of 'Wonhwang' Pear Trees with Low-pesticides and In Vitro Regrowth of Stem Cuttings as Affected by Time of Defoliation (시기별 적엽이 저농약 '원황'배의 과실품질과 삽수의 기내 재생장에 미치는 영향)

  • Kim, Byeong-Sam;Cho, Kyung-Chul;Ma, Kyung-Chul;Yun, Bong-Ki;Jung, Seok-Kyu;Han, Jeom-Hwa;Choi, Hyun-Sug
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.3
    • /
    • pp.469-480
    • /
    • 2015
  • The study was conducted on the effects of time of defoliation on fruit quality of pear (Pyrus pyrifolia Nakai) trees, managing with low-pesticides, and regrowth of stem cuttings in vitro. Treatments included for 40% of uniform defoliation at early-August, end-August, and early-September, as well as control (no defoliation). Defoliation at early-September and control increased growth of water sprouts as well as concentrations of carbohydrates, total nitrogen, and free sugar in one-year old shoots. Defoliation at early-September and control increased fruit yield and mean fruit weight, with high soluble solids content and fruit surface color of $a^*$ observed for both defoliation at end-August and early-September. Defoliation at early-August increased rates of electrolyte leakage in stem cuttings at $-18^{\circ}C$ in vitro. There were no significantly different for germination rates of the cuttings between the treatments at -18 and $-21^{\circ}C$ in vitro, with the highest germination of the cuttings observed for defoliation at early-September and control at $-27^{\circ}C$. Therefore, orchard management should be performed to be minimized for defoliation of the spur leaves until end-August, causing from precipitation and pests.

High-Efficiency CMOS Power Amplifier using Low-Loss PCB Balun with Second Harmonic Impedance Matching (2차 고조파 정합 네트워크를 포함하는 저손실 PCB 발룬을 이용한 고효율 CMOS 전력증폭기)

  • Kim, Hyungyu;Lim, Wonseob;Kang, Hyunuk;Lee, Wooseok;Oh, Sungjae;Oh, Hansik;Yang, Youngoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.104-110
    • /
    • 2019
  • In this paper, a complementary metal oxide semiconductor(CMOS) power amplifier(PA) integrated circuit operating in the 900 MHz band for long-term evolution(LTE) communication systems is presented. The output matching network based on a transformer was implemented on a printed circuit board for low loss. Simultaneously, to achieve high efficiency of the PA, the second harmonic impedances are controlled. The CMOS PA was fabricated using a $0.18{\mu}m$ CMOS process and measured using an LTE uplink signal with a bandwidth of 10 MHz and peak to average power ratio of 7.2 dB for verification. The implemented CMOS PA module exhibits a power gain of 24.4 dB, power-added efficiency of 34.2%, and an adjacent channel leakage ratio of -30.1 dBc at an average output power level of 24.3 dBm.

Characterization of Durability and Deterioration Eroded by Chemical Attack on the Concrete Lining in Conventional Tunnel (화학적 침식을 받은 재래식 터널 콘크리트 라이닝의 내구성능 및 열화특성)

  • Kim, Dong-Gyou;Lee, Seung-Tae;Jung, Ho-Seop
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.25-32
    • /
    • 2007
  • This study is to evaluate the effect of chemical attack on durability and deterioration of lining concrete in tunnel. Surface examination, nondestructive inspection, uniaxial compressive strength test, carbonation test, chloride diffusion test, micro-structural analysis were performed to analyze the deterioration of lining concrete in tunnel constructed 70 years ago. From surface examination results, the tunnel had been repaired and reinforced in several times. It has many cracks, water-leakage, efflorescence and exploitation. Compressive strengths obtained from nondestructive inspection and uniaxial compressive strength test have measured $17.5{\sim}34.7MPa$, and $12.8{\sim}40.3MPa$, respectively. Carbonation depth specimen cored from concrete lining has ranged from 3mm to 27mm. From chloride diffusion test, most specimens have low permeability. And the XRD analysis was able to detect ettringite and thaumasite, which were confirmed by SEM and EDS results to be the causes for the deterioration of lining concrete.

A Study on the Hazard Area of Bunkering for Ammonia Fueled Vessel (암모니아 연료추진 선박의 벙커링 누출 영향에 관한 연구)

  • Ilsup Shin;Jeongmin Cheon;Jihyun Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.964-970
    • /
    • 2023
  • As part of the International Maritime Organization ef orts to reduce greenhouse gas emissions, the maritime industry is exploring low-carbon fuels such as liquefied natural gas and methanol, as well as zero-carbon fuels such as hydrogen and ammonia, evaluating them as environmentally friendly alternatives. Particularly, ammonia has substantial operational experience as cargo on transport ships, and ammonia ship engines are expected to be available in the second half of 2024, making it relatively accessible for commercial use. However, overcoming the toxicity challenges associated with using ammonia as a fuel is imperative. Detection is possible at levels as low as 5 ppm through olfactory senses, and exposure to concentrations exceeding 300 ppm for more than 30 min can result in irreparable harm. Using the KORA program provided by the Chemical Safety Agency, an assessment of the potential risks arising from leaks during ammonia bunkering was conducted. A 1-min leak could lead to a 5 ppm impact within a radius of approximately 7.5 km, affecting key areas in Busan, a major city. Furthermore, the potentially lethal concentration of 300 ppm could have severe consequences in densely populated areas and schools near the bunkering site. Therefore, given the absence of regulations related to ammonia bunkering, the potential for widespread toxicity from even minor leaks highlights the requirement for the development of legislation. Establishing an integrated system involving local governments, fire departments, and environmental agencies is crucial for addressing the potential impacts and ensuring the safety of ammonia bunkering operations.

Environmental Geophysical Survey of Abandoned Landfills for Contamination Evaluation: A Case Study (불량 매립지 오염평가를 위한 지구물리 탐사 사례연구)

  • Lee, Sung-Soon;Lee, Jin-Yong;Yoon, Hee-Sung;Lee, Kang-Kun;Kim, Chang-Gyun;Yu, Young-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.463-471
    • /
    • 2006
  • Electrical resistivity surveys were conducted at areas of abandoned landfills in Cheonan and Wonju. Geology and extent of leachate migration around the landfills were evaluated with collected resistivity data by 2-D and 3-D resistivity inverse modeling. The Cheonan landfill is located above the paddy fields and the resistivity survey lines were crossed to examine possible pollution at the paddy fields by leakage of the landfill leachate. In Wonju, the landfill and the downgradient paddy fields are divided by a concrete barrier wall. At the bottom of the landfill, there is a leachate settlement system, which has not been in operation. To evaluate leachate leakage into the paddy fields, a total of 4 survey lines were used. According to the resistivity survey results, the landfill leachate in Cheonan appeared to be restricted only within the interior of the landfill, not to migrate into the subsurface of the paddy fields. These results are well consistent with electrical conductivity values of groundwaters obtained from a periodic analysis of water qualities. In Wonju, however, it was inferred that the leachate emanating from the landfill migrated beneath the abandoned leachate settlement system and the leachate would reach the downgradient paddy fields. Low resistivity area was observed in the old reservoir area and it appeared to be derived from convergence of groundwater flows from the surrounding valley and the moist wet land. In addition, groundwater flow into the paddy fields occurs beneath the old reservoir embankment at depths of $7{\sim}8m$. This paper reports details of the resistivity surveys for the uncontrolled landfills.

Characteristics of Blood Mixed Cement in Percutaneous Vertebroplasty (경피적 척추 성형술에서 혈액 혼합 시멘트의 특성)

  • Seo, Jin-Hyeok;Woo, Young-Ha;Jeong, Ju-Seon;Kim, Do-Hun;Kim, Ok-Gul;Lee, Sang-Wook;Park, Chan-Ho
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.5
    • /
    • pp.435-439
    • /
    • 2019
  • Purpose: This study evaluated the efficacy of blood mixed cement for osteoporotic vertebral compression fractures in reducing the complications of percutaneous vertebroplasty using conventional cement. Materials and Methods: This study was performed retrospectively in 80 patients, from January 2016 to January 2017. Porous cement was formed by mixing 2, 4, and 6 ml of blood with 20 g of cement used previously. A tube with a diameter and length of 2.8 mm and 215 mm, respectively, was used and the polymerization temperature, setting time, and optimal passing-time were measured and compared with those using only conventional cement. Radiologically, the results were evaluated and compared. Results: The polymerization temperature was 70.3℃, 55.3℃, 52.7℃, and 45.5℃ in the conventional cement (R), 2 ml (B2), 4 ml (B4), and 6 ml (B6), respectively, and the corresponding setting time decreased from 960 seconds (R) to 558 seconds (B2), 533 seconds (B4), and 500 seconds (B6). The optimal passing-time was 45 seconds (B2), 60 seconds (B4), and 78 seconds (B6) at 73 seconds (R), respectively and as the amount of blood increased, it was similar to the cement passing-time. The radiological results showed that the height restoration rates and the vertebral subsidence rates similar among the groups. Two cases of adjacent vertebral compression fractures in the R group and one in the B2 and B4 groups were encountered, and the leakage rate of the cement was approximately two times higher than that in the conventional cement group. Conclusion: In conventional percutaneous vertebroplasty, the procedure of using autologous blood with cement decreased the polymerization temperature, reduced the setting time, and the incidence of cement leakage was low. These properties may contribute to more favorable mechanical properties that can reduce the complications compared to conventional cements alone.

Physiological Responses to Drought Stress of Seven Evergreen Hardwood Species (상록활엽수 7수종의 건조스트레스에 대한 생리적 반응)

  • Jin, Eon-Ju;Cho, Min-Gi;Bae, Eun-Ji;Park, Junhyeong;Lee, Kwang-Soo;Choi, Myung Suk
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.4
    • /
    • pp.397-407
    • /
    • 2017
  • This research aims to analyze and compare the drought resistance of 7 species of landscape trees commonly grown in Korea. The 7 species are: Camellia japonica, Rhaphiolepis indica, Quercus glauca, Machilus thunbergii, Daphniphyllum macropodum, Dendropanax morbifera and Cinnamomum camphora. In order to analyze their drought resistance, the samples were left without irrigation for 30 days (05/09/2016 ~ 05/10/2016), during which period their respective drought resistor, relative water content, electrolyte elution figures and proline content were measured. As the non-irrigation proceeded, C. camphora was the first to wither, followed by D. morbifera, then D. macropodum, then M. thunbergii, then Q. glauca, then R. indica then finally C. japonica. Of the 7 species, Q. glauca, C. japonica and R. indica can be considered highly drought resistant, since they survived for longer than 3 weeks without irrigation. Relative water content (RWC) plummeted dramatically after the first 15 days of non-irrigation. Whereas RWC readings of C. camphora, D. morbifera, D. macropodum and M. tunbergii dropped by 40% or more, the other 4 species reported a relatively low rate of decrease at 20% or lower. The Camellia japonica, the R. indica and Q. glauca, which were the species with relatively high drought resistance, showed low proline content and electrolyte elution figures, whereas those of C. camphora, D. macropodum, D. morbifera and M. tunbergii were higher. Analysis through the nonlinear regression analysis logistic model showed that non-irrigation proved fatal for the 7 sample species in a range of 22.7 to 37.6 days. The C. japonica, R. indica, Q. glauca and M. tunbergii demonstrated a high drought resistance of 30 days or longer, whereas C. camphora, D. morbifera and D. macropodum had a low resistance of 25 days or less to drought from lack of water. In conclusion, out of the 7 species of broad-leaved evergreen trees tested, C. japonica, R. indica and Q. glauca seem to be suitable for use as landscape trees, owing to their high drought resistance.