• Title/Summary/Keyword: low input voltage

Search Result 934, Processing Time 0.029 seconds

An Input-Powered High-Efficiency Interface Circuit with Zero Standby Power in Energy Harvesting Systems

  • Li, Yani;Zhu, Zhangming;Yang, Yintang;Zhang, Chaolin
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1131-1138
    • /
    • 2015
  • This study presents an input-powered high-efficiency interface circuit for energy harvesting systems, and introduces a zero standby power design to reduce power consumption significantly while removing the external power supply. This interface circuit is composed of two stages. The first stage voltage doubler uses a positive feedback control loop to improve considerably the conversion speed and efficiency, and boost the output voltage. The second stage active diode adopts a common-grid operational amplifier (op-amp) to remove the influence of offset voltage in the traditional comparator, which eliminates leakage current and broadens bandwidth with low power consumption. The system supplies itself with the harvested energy, which enables it to enter the zero standby mode near the zero crossing points of the input current. Thereafter, high system efficiency and stability are achieved, which saves power consumption. The validity and feasibility of this design is verified by the simulation results based on the 65 nm CMOS process. The minimum input voltage is down to 0.3 V, the maximum voltage efficiency is 99.6% with a DC output current of 75.6 μA, the maximum power efficiency is 98.2% with a DC output current of 40.4 μA, and the maximum output power is 60.48 μW. The power loss of the entire interface circuit is only 18.65 μW, among which, the op-amp consumes only 2.65 μW.

A Hybrid Control Scheme of Asymmetrical Half Bridge Converter with Low Stresses of the Diodes (낮은 다이오드 스트레스를 갖는 비대칭 하프 브리지 컨버터의 하이브리드 제어기법)

  • 조창규;이동윤;박남주;김경환;현동석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.1
    • /
    • pp.55-62
    • /
    • 2004
  • This paper presents a new hybrid control method of asymmetrical half-bridge converter (AHBC) with low voltage stresses of the diodes. The proposed new control scheme can observe variation of secondary diode voltage stresses by using feedback of the input voltage and then decide the control portions, which are symmetrical control and asymmetrical control. Therefore, the proposed control scheme has many advantages such as a low rated voltage of the secondary diodes and low conduction loss according to the low voltage drop. The principle of the proposed control scheme is explained in detail and its validity is verifiedthrough simulated and experimental results

Electronic Ballast Using a Symmetrical Half-bridge Inverter Operating at Unity-Power-factor and High Efficiency

  • Suryawanshi Hiralal M.;Borghate Vijay B.;Ramteke Manojkumar R.;Thakre Krishna L.
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.330-339
    • /
    • 2006
  • This paper deals with novel electronic ballast based on single-stage power processing topology using a symmetrical half-bridge inverter and current injection circuit. The half-bridge inverter drives the output parallel resonant circuit and injects current through the power factor correction (PFC) circuit. Because of high frequency current injection and high frequency modulated voltage, the proposed circuit maintains the unity power factor (UPF) with low THD even under wide variation in ac input voltage. This circuit needs minimum and lower sized components to achieve the UPF and high efficiency. This leads to an increase in reliability of ballast at low cost. Furthermore, to reduce cost, the electronic ballast is designed for two series-connected fluorescent lamps (FL). The analysis and experimental results are presented for ($2{\times}36$ Watt) fluorescent lamps operating at 50 kHz switching frequency and input line voltage (230 V, 50 Hz).

Low-Power and Wide-Input Range Voltage Controlled Linear Variable Resistor Using an FG-MOSFET and Its Application

  • Kushima, Muneo;Tanno, Koichi;Kumagai, Hiroo;Ishizuka, Okihiko
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.759-762
    • /
    • 2002
  • In this paper, a voltage-controlled linear variable resistor (VCLVR) using a floating-gate MOS-FET (FG-MOSFET) is proposed. The proposed-circuit is the grounded VCLVR consists of only an ordinary MOSFET and an FG-MOSFET. The advantage of the proposed VCLVR are low-voltage and wide-input range. Next, as applications, a floating-node voltage controlled variable resistor and an operational transconductance amplifier using the proposed VCLVRs are proposed. The performance of the proposed circuits are characterized through HSPICE simulations with a standard 0.6 ${\mu}$m CMOS process. simulations of the proposed VCLVR demonstrate a resistance value of 40 k$\Omega$ to 338 k$\Omega$ and a THD of less than 1.1 %.

  • PDF

Design of Low voltage CMOS Analog Four-Quadrant Multiplier (저전압 CMOS 아날로그 4상한 멀티플라이어 설계)

  • 유영규;박종현;윤창훈;김동용
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.244-247
    • /
    • 1999
  • In this paper, a low voltage CMOS analog four-quadrant multiplier is presented. The proposed multiplier is composed of a pair of transconductor and lowers supply voltage down to $V_{T}$+2 $V_{Ds,sat}$+ $V_{DS,triode}$. The designed analog four-quadrant multiplier have simulated by HSPICE using 0.25${\mu}{\textrm}{m}$ n-well CMOS process with a 1.2V supply voltage. Simulation results show that the THD can be 1.28% at maximum differential input of 0.7 $V_{p-p}$././.

  • PDF

Design and Analysis of 20 W Class LED Converter Considering Its Control Method (제어 방식에 따른 20 W급 LED Converter 설계 및 분석)

  • Jeong, Young-Gi;Kim, Sung-Hyun;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.53-57
    • /
    • 2012
  • In this paper, by designing 20 W class driving circuit for driving high-power LED (Light Emitting Diode), we are going to comparatively carry out the analysis of characteristics for power circuit according to each design method. In this case, 200 V 60 Hz was performed as input data. The electrical characteristics such as voltage, current and ripple are checked for constant current circuit and constant voltage circuit in the LED module. In addition, as the ripple has an influence on illumination of LED light, low temperature working (-20 [$^{\circ}C$]) and high temperature working(80 [$^{\circ}C$]) are measured to make sure the ripple characteristics in accordance with temperature. In low temperature operation -20 [$^{\circ}C$] measurements, both constant current circuit and constant-voltage circuit were less impacted on input fluctuation, whereas in the high temperature operation 80 [$^{\circ}C$], current voltage in constant voltage circuit was surge after 430 [hour]. Voltage current ripple of constant current circuit was much less than constant voltage circuit, therefore we can show that constant current circuit is more stable.

Thin Film Multijunction Thermal Converter for Low Input Voltage with Low Frequency (저주파수 및 저입력전압용 박막형 다중접합 열전변환기)

  • Hwang, Chan-Soon;Lee, Hyung-Ju;Kim, Jin-Sup;Lee, Jung-Hee;Park, Se-Il;Kwon, Sung-Won
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.145-154
    • /
    • 2002
  • NiCr-heaters with three different thicknesses ranging from 400 nm to 800 nm were fabricated and their characteristics were compared for the purpose of developing a chromel-alumel multijunction thermal converter for low input voltage with low frequency. The thermoelectric effect-induced AC-DC voltage transfer difference of the thermal converter with a built-in NiCr-heater of 400 nm-thickness was ${\pm}0.51{\sim}1.69\;ppm$ in the DC reversing frequency of $40\;Hz{\sim}10\;kHz$ with appling $0.5\;V_{rms}$ and the difference was increased to ${\pm}40{\sim}{\pm}115\;ppm$ in the frequency of $40\;Hz{\sim}1\;MHz$, when both thermoelectric effects and frequency effects were considered, showing the thermal converter would be suitable for the low input voltage application with low frequency.

A Study on the Off-Grid Photovoltaic Generation System with Sequential Voltage System (순차전압시스템을 고려한 독립형 태양광 발전 시스템에 관한 연구)

  • Kim, Gu-Yong;Bae, Jun-Hyung;Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.364-367
    • /
    • 2020
  • This paper presents the off-grid PV-ESS system of sequential voltage control method applied to OR logic gate. The conventional off-grid PV-ESS system with the low-voltage series connection has problems due to capacity expansion. To solve these problems, this paper proposes a noble PV-ESS system with high efficiency and low cost by applying sequential voltage control technique of the high-voltage series connection of analog circuit type. The input voltage of DC to AC inverter can be converted from the low-voltage by the combinations of series connection of the conventional cascaded 24V solar cell unit modules to the high-voltage of 384V in battery. The output voltage of the battery was 384V as the each input voltage of three phase DC to AC inverter, and the each output voltage of three phase 10kW DC to AC inverter is designed to be AC380V@60Hz as the line to line rms voltage value. To prove the validity of the theoretical analysis by PSIM simulation, the operating characteristics of sequential voltage control system with OR logic gate were confirmed through experiment results.

Single-Phase Power Factor Correction(PFC) Converter Using the Variable gain (가변이득을 가지는 디지털제어 단상 역률보상회로)

  • Baek, J.W.;Shin, B.C.;Jeong, C.Y.;Lee, Y.W.;Yoo, D.W.;Kim, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.240-243
    • /
    • 2001
  • This paper presents the digital controller using variable gain for single-phase power factor correction (PFC) converter. Generally, the gain of inner current control loop in single-stage PFC converter has a constant magnitude. This is why input current is distorted under low input voltage. In particular, a digital controller has more time delay than an analog controller which degrades characteristics of control loop. So, it causes the problem that the gain of current control loop isn't increased enough. In addition, the oscillation happens in the peak value of the input voltage open loop PFC system gain changes according to ac input voltage. These aspects make the design of the digital PFC controller difficult. In this paper, the improved digital control method for single-phase power factor converter is presented. The variable gain according to input voltage and input current help to improve current shape. The 800W converter is manufactured to verify the proposed control method.

  • PDF

A Gate-Leakage Insensitive 0.7-V 233-nW ECG Amplifier using Non-Feedback PMOS Pseudo-Resistors in 0.13-μm N-well CMOS

  • Um, Ji-Yong;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.4
    • /
    • pp.309-315
    • /
    • 2010
  • A fully-differential low-voltage low-power electrocardiogram (ECG) amplifier by using the nonfeedback PMOS pseudo-resistors is proposed. It consists of two operational-transconductance amplifiers (OTA) in series (a preamplifier and a variable-gain amplifier). To make it insensitive to the gate leakage current of the OTA input transistor, the feedback pseudo-resistor of the conventional ECG amplifier is moved to input branch between the OP amp summing node and the DC reference voltage. Also, an OTA circuit with a Gm boosting block without reducing the output resistance (Ro) is proposed to maximize the OTA DC gain. The measurements shows the frequency bandwidth from 7 Hz to 480 Hz, the midband gain programmable from 48.7 dB to 59.5 dB, the total harmonic distortion (THD) less than 1.21% with a full voltage swing, and the power consumption of 233 nW in a 0.13 ${\mu}m$ CMOS process at the supply voltage of 0.7 V.