• Title/Summary/Keyword: low gate count

Search Result 41, Processing Time 0.029 seconds

Design and Implementation of Multi-channel FFT Processor for MIMO Systems (MIMO 시스템을 위한 다채널 FFT 프로세서의 설계 및 구현)

  • Jung, Yongchul;Cho, Jaechan;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.659-665
    • /
    • 2017
  • In this paper, a low complexity fast Fourier transform(FFT) processor is proposed for multiple input multiple output(MIMO) systems. The IEEE 802.11ac standard has been adopted along with the demand for a system capable of high channel capacity and Gbps transmission in order to utilize various multimedia services using a wireless LAN. The proposed scalable FFT processor can support the variable length of 64, 128, 256, and 512 for 8x8 antenna configuration as specified in IEEE 802.11ac standard with MIMO-OFDM scheme. By reducing the required number of non-trivial multipliers with mixed-radix(MR) and multipath delay commutator(MDC) architecture, the complexity of the proposed FFT processor was dramatically decreased. Implementation results show that the proposed FFT processor can reduced the logic gate count by 50%, compared with the radix-2 SDF FFT processor. Also, compared with the 8-channel MR-2/2/2/4/2/4/2 MDC processor and 8-channel MR-2/2/2/8/8 MDC processor, it is shown that the gate count is reduced by 18% and 17% respectively.

Area-Optimized Multi-Standard AES-CCM Security Engine for IEEE 802.15.4 / 802.15.6

  • Choi, Injun;Kim, Ji-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.293-299
    • /
    • 2016
  • Recently, as IoT (Internet of Things) becomes more important, low cost implementation of sensor nodes also becomes critical issues for two well-known standards, IEEE 802.15.4 and IEEE 802.15.6 which stands for WPAN (Wireless Personal Area Network) and WBAN (Wireless Body Area Network), respectively. This paper presents the area-optimized AES-CCM (Advanced Encryption Standard - Counter with CBC-MAC) hardware security engine which can support both IEEE 802.15.4 and IEEE 802.15.6 standards. First, for the low cost design, we propose the 8-bit AES encryption core with the S-box that consists of fully combinational logic based on composite field arithmetic. We also exploit the toggle method to reduce the complexity of design further by reusing the AES core for performing two operation mode of AES-CCM. The implementation results show that the total gate count of proposed AES-CCM security engine can be reduced by up to 42.5% compared to the conventional design.

Low-power Structure for H.264 Deblocking Filter Using Mux (MUX를 사용한 H.264용 저전력 디블로킹 필터 구조)

  • Park, Jin-Su;Han, Kyu-Hoon;Oh, Se-Man;Jang, Young-Beom
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.339-340
    • /
    • 2006
  • In this paper, a low-power deblocking filter structure for H.264 video coding algorithm is proposed. By sharing addition hardware for common filter coefficients, we have designed an efficient deblocking filter structure. Proposed deblocking filter utilizes MUX and DEMUX circuits for input data sharing and shows 44.2% reduction for add operation. In the HDL coding simulation and FPGA implementation, we achieved 19.5% and 19.4% gate count reduction, respectively, comparison with the conventional deblocking filter structure.

  • PDF

New Low-Power and Small-Area Reed-Solomon Decoder (새로운 저전력 및 저면적 리드-솔로몬 복호기)

  • Baek, Jae-Hyun;SunWoo, Myung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.96-103
    • /
    • 2008
  • This paper proposes a new low-power and small-area Reed-Solomon decoder. The proposed Reed-Solomon decoder using a novel simplified form of the modified Euclid's algorithm can support low-hardware complexity and low-Power consumption for Reed-Solomon decoding. The simplified modified Euclid's algorithm uses new initial conditions and polynomial computations to reduce hardware complexity, and thus, the implemented architecture consisting of 3r basic cells has the lowest hardware complexity compared with existing modified Euclid's and Berlekamp-Massey architectures. The Reed-Solomon decoder has been synthesized using the $0.18{\mu}m$ Samsung standard cell library and operates at 370MHz and its data rate supports up to 2.9Gbps. For the (255, 239, 8) RS code, the gate counts of the simplified modified Euclid's architecture and the whole decoder excluding FIFO memory are only 20,166 and 40,136, respectively. Therefore, the proposed decoder can reduce the total gate count at least 5% compared with the conventional DCME decoder.

Hardware Design of Rate Control for H.264/AVC Real-Time Video Encoding (실시간 영상 부호화를 위한 H.264/AVC의 비트율 제어 하드웨어 설계)

  • Kim, Changho;Ryoo, Kwangki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.201-208
    • /
    • 2012
  • In this paper, the hardware design of rate control for real-time video encoded is proposed. In the proposed method, a quadratic rate distortion model with high-computational complexity is not used when quantization parameter values are being decided. Instead, for low-computational complexity, average complexity weight values of frames are used to calculate QP. For high speed and low computational prediction, the MAD is predicted based on the coded basic unit, using spacial and temporal correlation in sequences. The rate control is designed with the hardware for fast QP decision. In the proposed method, a quadratic rate distortion model with high-computational complexity is not used when quantization parameter values are being decided. Instead, for low-computational complexity, average complexity weight values of frames are used to calculate QP. In addition, the rate control is designed with the hardware for fast QP decision. The execution cycle and gate count of the proposed architecture were reduced about 65% and 85% respectively compared with those of previous architecture. The proposed RC was implemented using Verilog HDL and synthesized with UMC $0.18{\mu}m$ standard cell library. The synthesis result shows that the gate count of the architecture is about 19.1k with 108MHz clock frequency.

7.7 Gbps Encoder Design for IEEE 802.11ac QC-LDPC Codes

  • Jung, Yong-Min;Chung, Chul-Ho;Jung, Yun-Ho;Kim, Jae-Seok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.419-426
    • /
    • 2014
  • This paper proposes a high-throughput encoding process and encoder architecture for quasi-cyclic low-density parity-check codes in IEEE 802.11ac standard. In order to achieve the high throughput with low complexity, a partially parallel processing based encoding process and encoder architecture are proposed. Forward and backward accumulations are performed in one clock cycle to increase the encoding throughput. A low complexity cyclic shifter is also proposed to minimize the hardware overhead of combinational logic in the encoder architecture. In IEEE 802.11ac systems, the proposed encoder is rate compatible to support various code rates and codeword block lengths. The proposed encoder is implemented with 130-nm CMOS technology. For (1944, 1620) irregular code, 7.7 Gbps throughput is achieved at 100 MHz clock frequency. The gate count of the proposed encoder core is about 96 K.

An area-efficient 256-point FFT design for WiMAX systems

  • Yu, Jian;Cho, Kyung-Ju
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.3
    • /
    • pp.270-276
    • /
    • 2018
  • This paper presents a low area 256-point pipelined FFT architecture, especially for IEEE 802.16a WiMAX systems. Radix-24 algorithm and single-path delay feedback (SDF) architecture are adopted in the design to reduce the complexity of twiddle factor multiplication. A new cascade canonical signed digit (CSD) complex multipliers are proposed for twiddle factor multiplication, which has lower area and less power consumption than conventional complex multipliers composed of 4 multipliers and 2 adders. Also, the proposed cascade CSD multipliers can remove look-up table for storing coefficient of twiddle factors. In hardware implementation with Cyclone 10LP FPGA, it is shown that the proposed FFT design method achieves about 62% reduction in gate count and 64% memory reduction compared with the previous schemes.

Low Power SAD Processor Architecture for Motion Estimation of K264 (K264 Motion Estimation용 저전력 SAD 프로세서 설계)

  • Kim, Bee-Chul;Oh, Se-Man;Yoo, Hyeon-Joong;Jang, Young-Beom
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.263-264
    • /
    • 2007
  • In this paper, an efficient SAD(Sum of Absolute Differences) processor structure for motion estimation of 0.264 is proposed. SAD processors are commonly used both in full search methods for motion estimation or in fast search methods for motion estimation. Proposed structure consists of SAD calculator block, combinator block, and minimum value calculator block. Especially, proposed structure is simplified by using Distributed Arithmetic for addition operation. The Verilog-HDL(Hard Description Language) coding and FPGA implementation results for the proposed structure show 39% and 32% gate count reduction comparison with those of the conventional structure, respectively. Due to its efficient processing scheme, the proposed SAD processor structure can be widely used in size dominant H.264 chip.

  • PDF

Design of Real-Time Dead Pixel Detection and Compensation System for Image Quality Enhancement in Mobile Camera (모바일 카메라 화질 개선을 위한 실시간 불량 화소 검출 및 보정 시스템의 설계)

  • Song, Jin-Gun;Ha, Joo-Young;Park, Jung-Hwan;Choi, Won-Tae;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.4
    • /
    • pp.237-243
    • /
    • 2007
  • In this paper, we propose the Real-time Dead-Pixel Detection and Compensation System for mobile camera and its hardware architecture. The CMOS image sensors as image input devices are becoming popular due to the demand for miniaturized, low-power and cost-effective imaging systems. However a conventional Dead-Pixel Detection Algorithm is disable to detect neighboring dead pixels and it degrades image quality by wrong detection and compensation. To detect dead pixels the proposed system is classifying dead pixels into Hot pixel and Cold pixel. Also, the proposed algorithm is processing line-detector and $5{\times}5$ window-detector consecutively. The line-detector and window-detector can search dead pixels by using one-dimensional(only horizontal) method in low frequency area and two-dimensional(vertical and diagonal) method in high frequency area, respectively. The experimental result shows that it can detect 99% of dead pixels. It was designed in Verilog hardware description language and total gate count is 23K using TSMC 0.25um ASIC library.

  • PDF

Design of a Low Memory Bandwidth Inter Predictor Using Implicit Weighted Prediction Technique (묵시적 가중 예측기법을 이용한 저 메모리 대역폭 인터 예측기 설계)

  • Kim, Jinyoung;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2725-2730
    • /
    • 2012
  • In this paper, for improving the H.264/AVC hardware performance, we propose an inter predictor hardware design using a multi reference frame selector and an implicit weighted predictor. previous reference frame are reused for Low Memory Bandwidth. The size of the reference memory in the predictor was reduced by about 46% and the external memory access rate was reduced by about 24% compared with the one in the reference software JM16.0. We designed the proposed system with Verilog-HDL and synthesized inter predictor circuit using the Magnachip 0.18um CMOS standard cell library. The synthesis result shows that the gate count is about 2,061k and the design can run at 91MHz.