• Title/Summary/Keyword: low frequency noise

Search Result 1,768, Processing Time 0.032 seconds

Frequency Characteristics of a Membrane-Cavity System and its Applications (박막-공동계의 주파수 특성과 응용)

  • 김양한;임종민
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1123-1130
    • /
    • 1999
  • A system which is composed of a membrane and an air cavity is studied. To analyze the low frequency characteristics of a single membrane-cavity system, a plane wave model is derived. The relations among system variables, such as tension, density and stiffness, are investigated. Absorption coefficient has a maximum value at a peak frequency. In addition, a membrane-cavity system absorbs the low frequency noise with a band around peak frequency. This band is primarily determined by damping effect of the system. Furthermore, a multiple membrane-cavity system is investigated by using the transfer matrix method. To show the practical applicability of the proposed model, extensive experiments were conducted. Results show that a multiple membrane-cavity system can have broader noise reduction in the low frequency range than single.

  • PDF

Improvement of Sound Transmission Loss of Ship's Bulkhead at Low Frequency Range (선박 격벽의 저주파수 대역 차음성능 향상에 관한 연구)

  • Kim, Sung-Hoon;Joo, Won-Ho;Bae, Jong-Gug
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.167-168
    • /
    • 2009
  • The noise sources in ship and offshore structure have an influence on adjacent receiving area through a partition between noise sources and receiving area. The partition in ship is usually made of stiffened plate. Sound transmission loss (STL) of the partition at high frequency could be improved by additional installation of insulation or wall panel. At low frequency, however, it is very difficult and needs an increase of plate thickness which causes a considerable weight increase of ship. In this paper, we have investigated the effect of the bulkhead boundary condition. From measurement result, we found that the bulkhead boundary condition can affect a lot in STL, especially at low frequency range. Finally, we get the 5dB increase in STL through the modification of boundary condition.

  • PDF

A Study on Low Phase Noise Frequency Synthesizer Design for Ku-Band (KU-BAND 저 위상잡음 주파수 합성기 설계에 관한 연구)

  • Kim, Tae-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.629-636
    • /
    • 2014
  • In the proposed paper, we designed low phase noise frequency synthesizer for Ku-band. The proposed up-mixing frequency synthesizer consists of narrow local oscillation part and variable frequency oscillation part. To improve the phase noise of frequency synthesizer, we analyze how the configuration of frequency synthesizer affect the phase noise. The implemented frequency synthesizer reduce the phase noise. The phase noise is -95.18dBc/Hz at 7kHz frequency offset in 16GHz and -94.27dBc/Hz at 7kHz frequency offset in 16.125GHz.

A Helmholtz Resonator Array Panel for Low Frequency Sound Absorption (저주파수 흡음을 위한 헬름홀쯔 공명기 배열형 패널)

  • Kim, Yang-Hann;Kim, SangRyul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.924-930
    • /
    • 2005
  • Sound absorptive materials have good performance in high frequency range, not at low frequencies. Therefore it has been great challenge to develop a sound absorbing structure that is good at low frequency. We propose to use a Helmholtz resonator array panel for this purpose. A Helmholtz resonator is one of noise control elements widely used in many practical applications. The resonator is a simple structure composed of a rigid-walled cavity with a neck, but it has very high performance at resonance frequency. This paper discusses the sound absorption of Helmholtz resonator array panels at normal and random incidence. First, various experimental results are introduced and studied. Secondly, we theoretically predict the absorptive characteristics of the resonator away panel. The theoretical approach is based on the Fourier analysis for a periodic absorber. We believe that this method can be used to design a panel for low frequency noise control.

High Frequency Noise Reduction Method Using a Newly Designed Low-pass Filter in DFT-Based Phasor Estimation (DFT 기반 페이저 연산 시 새로운 저역통과필터를 이용한 고주파 노이즈 경감 방법)

  • Baek, Min-Woo;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.898-904
    • /
    • 2017
  • DFT(Discrete Fourier Transform) is one of the most widely used method to estimate the phasor of a relaying signal. The harmonics are eliminated by the DFT. However, high frequency components, except for harmonics, are not removed and cause an error in DFT-based phasor estimation process. This paper suggests high frequency noise reduction method by using a newly designed low-pass filter to estimate a signal phasor. When selecting a stop-band cut-off frequency of the low-pass filter, high frequency components generated by faults are considered. To reduce the phasor estimation delay caused by a low-pass filter, this paper proposes a low-pass filter whose settling time is reduced. An adverse effect of high frequency noise on DFT-based phasor estimation is reduced. To evaluate the performance of the proposed method, signals which are collected under a fault condition at a 345[kV] transmission system modeled by EMTP-RV are used.

Time Domain Prediction and Analysis of Low Frequency Noise from Wind Turbine using Hybrid Computational Aeroacoustics (CAA) Method (복합 전산 공력음향학(CAA) 방법을 이용한 시간영역 풍력터빈 저주파수 소음 예측과 분석)

  • Lee, Gwang-Se;Cheong, Cheolung;Kim, Hyung-Taek;Joo, Won-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.369-376
    • /
    • 2013
  • Using Lowson's acoustic analogy, low frequency noise of a wind turbine (WT) is predicted in time domain and the noise sources contributing to the low frequency noise is analyzed. To compute averaged pressure distribution on blades of the WT as noise source, XFOIL is utilized. The blade source domain is divided into several segments along the span direction to compute force exerted on air surrounding the blade segments, which is used as input for noise prediction. The noise sources are decomposed into three terms of force fluctuation, acceleration and velocity terms and are analyzed to investigate each spectral contribution. Finally, predicted spectra are compared with measured low frequency noise spectrum of a wind turbine in operation. It is found that the force fluctuation component contributes strongly in low frequency range with increasing wind speed.

A Study on the Noise Characteristics of Cylindrical Roller Bearings (원통형 로울러 베어링의 소음 특성에 관한 연구)

  • 노병후;김대곤;김경웅
    • Tribology and Lubricants
    • /
    • v.19 no.6
    • /
    • pp.342-348
    • /
    • 2003
  • The purpose of the paper is to investigate the noise characteristics of cylindrical roller bearings. For the sake of simplicity, it is assumed that the cylindrical roller bearing is infinitely long, and there is no outside force acting on the bearing. The effects of radial clearance of the bearing, viscosity of the lubricant and number of the roller on the noise of the bearing are also examined. Results show that the fundamental frequency of the bearing noise corresponds to the multiplication of number of the roller and whirling frequency of the roller center or the retainer. The acoustical frequency spectra of the roller bearing are pure tone spectra, containing the fundamental frequency of the bearing and its super­harmonics. The low viscosity of the lubricant, high radial clearance of the bearing, and low number of the roller decrease the bearing noise. The results and discussions of the present paper could aid in the low­noise design of the cylindrical roller bearing.

A Study on Low Phase Noise Frequency Synthesizer Design for Satellite Terminal (위성통신 단말용 저 위상잡음 주파수 합성기 설계에 관한 연구)

  • Ryu, Joon-Gyu;Oh, Deock-Gil;Hong, Sung-Yong
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.45-49
    • /
    • 2011
  • In this paper, we present the high resolution and low phase noise frequency synthesizer for satellite terminal. To improve the phase noise of frequency synthesizer, we analyze how the configuration of frequency synthesizer affect the phase noise. The implemented frequency synthesizer reduce the phase noise and show the high resolution. The output power of this frequency synthesizer is over -2dBm in 950~1450MHz and the phase noise of the -101dBc/Hz at 10kHz frequency offset.

Certification of Noise in Medium Speed Diesel Engine Test Shop (중형 엔진 시운전장의 소음 원인 규명)

  • Cho, S.Y.;Oh, K.T.;Kim, H.W.;Ha, J.S.;Kim, K.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1693-1698
    • /
    • 2000
  • In operating test of medium speed diesel engine, the large noise over 110dBA would be occurred, and silencer should be needed to prevent the transmission of noise through exhaust duct. A near neighborhood of medium speed engine test shop, outbreak of low frequency noise was reported. From the result of noise measurement, it was found that the coupling of engine noise and air column between workshops was main cause of annoying low frequency noise. From this study, 3 ways of reformation methods were proposed; insertion of plenum chamber, placement of baffles, and alteration of direction of exhaust. As a result of these modification, low frequency noise was cancelled out.

  • PDF

A Laboratory Study on Low Frequency Noise Assessment based on Noise Acceptability Limit (소음 수응 한계를 고려한 저주파 소음평가에 대한 실험적 연구)

  • Hong, Seung-Ki;Kim, Jae-Hwan;Kim, Kyu-Tae;Lee, Soo-Gab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.736-740
    • /
    • 2007
  • A laboratory study on low frequency noise assessment has been carried out to evaluate the relevance of the weighting curve. Especially, the A-weighting curve which is used in most noise assessments has been evaluated using the acceptability limit in this study. The acceptability limit is one of the indicators in which the subjective responses were well-reflected. For the measurement of the acceptability limit, pure tone stimuli were used in the frequency range between 20 and 200 Hz. The measurement was proceeded in the anechoic chamber to minimize the background noise level. A total of 29 test subjects, who were aged between 19 to 33 years, participated in this study. They had been exposed to various stimuli for about 1 hour by supra-aural earphone. The measurement consisted of two listening sessions: hearing threshold and the acceptability limit session. The results showed that the tendency of the acceptability limit curve was approximately equal to C-weighting curve which had been found to be superior to A-weighting curve in assessment of low frequencies.