• Title/Summary/Keyword: low cycle fatigue test

Search Result 138, Processing Time 0.026 seconds

A Proposal of Parameter to Predict Biaxial Fatigue Life for CF8M Cast Stainless Steels (CF8M 주조 스테인리스강의 2축 피로수명 예측을 위한 파라미터의 제안)

  • Park Joong Cheul;Kwon Jae Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.815-821
    • /
    • 2005
  • Biaxial low cycle fatigue test was carried out to predict fatigue life under combined axial-torsional-loading condition which is that of in-phase and out-of-phase for CF8M cast stainless steels. Fatemi-Socie(FS) parameter which is based on critical plane approach is not only one of methods but also the best method that can predict fatigue life under biaxial loading condition. But the result showed that, biaxial fatigue life prediction by using FS parameter with several different parameters for the CF8M cast stainless steels is not conservative but best results. So in this present research, we proposed new fatigue life prediction parameter considering effective shear stress instead of FS parameter which considers the maximum normal stress acting on maximum shear strain and its effectiveness was verified.

Effect of Microporosity on High Cycle Fatigue Property of A356 Alloy (A356 합금의 고주기 피로특성에 미치는 미소기공율의 영향)

  • Yoo, Suk-Jong;Lee, Choong-Do
    • Journal of Korea Foundry Society
    • /
    • v.31 no.4
    • /
    • pp.198-204
    • /
    • 2011
  • The present study was aimed to investigate the dependence of fatigue property on microporosity variation of low-pressure die-cast (LPDC) A356 alloy. The fatigue property of A356 alloy was evaluated through high cycle fatigue test, and the microporosity-terms used were the fractographic porosity measured from SEM observation on fractured surface and the volumetric porosity obtained through the density measurement using Archimedes's principle. The number of cycles to failure of A356 alloys depends obviously upon the variation of fractographic porosity, and can describe in terms of the defect susceptibility which depends on the microporosity variation at a given value of stress amplitude. The modified Basquin's equation was suggested through the combination of microporosity variation and static maximum tensile stress to fatigue strength coefficient. Using modified Basquin's equation, it could suggest that the maximum values of fatigue strength coefficient and exponent achievable in defect-free condition of A356 alloy are 265 MPa, -0.07, respectively.

Fatigue Life Prediction Model of 12% Cr Rotor Steel (12% 크롬 로터강의 피로수명 예측 모델에 관한 연구)

  • 장윤석;오세욱;오세규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1349-1355
    • /
    • 1990
  • By examining the fatigue deformation properties of 12% Cr rotor steel which has been proved to have high fatigue and creep rupture strength around 600deg. C, authors reviewed major fatigue life prediction models such as Manson, Langer and Morrow equations, and following results were obtained. (1) A simple life prediction model for 12% Cr rotor steel was obtained as follows : DELTA..epsilon.$_{t}$ =2.18+.sigma.$_{u}$ /E+ $N^{-0.065}$+ $e^{0.6}$ $N^{-0.025}$ This equation shows that fatigue life, N, can be easily determined when total strain range, DELTA..epsilon.$_{t}$ and ultimate tensile strength, .sigma.$_{u}$ are known by simple tension test on the given test conditions. (2) Life prediction equation with equivalent maximum stress, DELTA..sigma./2, corresponding maximum strain in one cycle at room temperature is as follows: DELTA..sigma./w=-7.01logN+96.69+96.69

Notch Strain Analysis of Cruciform Welded Joint using Nonlinear Kinematic Hardening Model (비선형 이동 경화모델을 이용한 십자형 필릿 용접부의 변형율 해석)

  • Kim, Yooil;Kim, Kyung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.1
    • /
    • pp.41-48
    • /
    • 2013
  • Several fatigue damages have recently been reported which cannot be resolved in the context of the existing fatigue design procedure, and they are suspected to be the cracks induced by the low cycle fatigue mechanism. To tackle the problem, a series of material tests together with fatigue tests have been carried out, and elasto-plastic notch strain analysis using nonlinear kinematic hardening model has been performed. The cyclic stress-strain curves are obtained and the nonlinear kinematic hardening model was calibrated based on the obtained material data. Also, the fatigue test with non-load-carrying cruciform fillet welded joint has been performed in low cycle fatigue regime. Then, the notch strain analyses have been carried out to find the precise elasto-plastic behavior of the material at the notch root of the cruciform joint. The variation of the material property from the base metal via HAZ up to the weld metal was taken into account using spatial variation of the material property. Then the detail elasto-plastic behavior of the welded joint subjected to the repeated cyclic loading has been investigated further through the comparison with the prediction with Neuber's rule. The calibration of the nonlinear kinematic hardening model and nonlinear notch strain analyses have been performed using the commercial FE program ABAQUS.

Low Cycle Fatigue Characteristics of the Railway Wheels and Axles (차륜 및 차축 재료의 저주기 피로특성)

  • Kim D. J.;Seok C. S.;Seo J. W.
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.427-433
    • /
    • 2005
  • Railway wheelset is the most essential part which undergoes severe cyclic loadings. In recent years, there has been increasing need for insuring the safety of running as the speed of the railway vehicles is getting higher. So it is required on the assessment of fatigue characteristics of the wheelset to consider plastic deformation which might be probable in the severe loading condition. In this study, total-strain controlled low cycle fatigue(LCF) test were performed to observe the LCF behaviors of the railway wheels and axles using companion specimens method. From the experimental results, the cyclic mechanical properties have been evaluated and total strain amplitude versus life relationship have been derived using the empirical Coffin-Manson law.

  • PDF

Durability Analysis of Automotive AHSS Component Considering GMAW Condition (GMAW 용접조건을 고려한 자동차 AHSS 샤시부품의 내구해석)

  • Kwon, Hyuk-Sun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.83-83
    • /
    • 2009
  • The automotive chassis components are structural assemblies that support the engine, suspension, and steering components of the vehicle. For the development of AHSS components, the durability analysis is important. In this paper, the low cycle fatigue property of AHSS was evaluated for the geometry complex and local plasticity in the base material. The GMAW optimization was implemented for the weld soundness using the moving least square method. And the weld S-N curves of AHSS were evaluated to access durability analysis for the weld region. For the verification, the durability analysis of the couple torsion beam axle (CTBA) was performed and compared to the rig test result. The durability analysis using the low cycle fatigue property and the evaluated weld S-N curve of AHSS met the good agreement with the test result.

  • PDF

Study on the Material Parameter Extraction of the Overlay Model for the Low Cycle Fatigue(LCF) Analysis (저주기 피로해석을 위한 다층모델의 재료상수 추출에 관한 연구)

  • Kim, Sang-Ho;Kabir, S.M. Humayun;Yeo, Tae-In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.66-73
    • /
    • 2010
  • This work was focused on the material parameter extraction for the isothermal cyclic deformation analysis for which Chaboche(Combined Nonlinear Isotropic and Kinematic Hardening) and Overlay(Multi Linear Hardening) models are normally used. In this study all the parameters were driven especially based on Overlay theories. A simple method is suggested to find out best material parameters for the cyclic deformation analysis prior to the isothermal LCF(Low Cycle Fatigue) analysis. The parameter extraction was done using 400 series stainless steel data which were published in the reference papers. For simple and quick review of the parameters extracted by suggested method, 1D FORTRAN program was developed, and this program could reduce the time for checking the material data tremendously. For the application to FE code ABAQUS user subroutine for the material models was developed by means of UMAT(User Material Subroutine), and the stabilized hysteresis loops obtained by the numerical analysis were in good harmony with test results.

Life Prediction of Low Cycle Fatigue for Ni-base Superalloy GTD111 DS at Elevated Temperature (Ni기 초내열합금 GTD111 DS의 고온 저주기 피로수명 예측)

  • Kim, Jin Yeol;Yoon, Dong Hyun;Kim, Jae Hoon;Bae, Si Yeon;Chang, Sung Yong;Chang, Sung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.765-770
    • /
    • 2017
  • GTD111 DS of nickel base superalloy has been used for gas turbine blades. In this study, low cycle fatigue test was conducted on the GTD111 DS alloy by setting conditions similar to the real operating environment. The low cycle fatigue tests were conducted at room temperature, $760^{\circ}C$, $870^{\circ}C$, and various strain amplitudes. Test results showed that fatigue life decreased with increasing total strain amplitude. Cyclic hardening response was observed at room temperature and $760^{\circ}C$; however, tests conducted at $870^{\circ}C$ showed cyclic softening response. Stress relaxation was observed at $870^{\circ}C$ because creep effects occurred from holding time. A relationship between fatigue life and total strain range was obtained from the Coffin-Manson method. The fratography using a SEM was carried out at the crack initiation and propagation regions.

Clamp Type-dependent HCF Life Estimation of the Overhead Cable for Distribution Grids (고정 방식 차이에 따른 배전 가공전선의 고주기피로 수명 특성 비교 평가)

  • Lee, Dooyoung;Jung, Jinseung;Kim, Youngdae;Bang, Jiye
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.241-248
    • /
    • 2021
  • High cycle fatigue life for the cables with two different types of clamps is estimated comparatively through acceleration testing. The high cycle fatigue fracture of overhead lines is caused mainly by the aeolian vibration which is induced by vortex shedding. It is necessary to manage the integrity of cables continuedly considering that the aeolian vibration is unavoidable since it occurs in steady and relatively low wind velocity. Two types of clamps which are largely used for overhead lines of the distribution grids are selected and failure data are obtained by step stress testing with a electrodynamic shaker with them. The inverse power law is assumed to describe the stress-life relationship and the fatigue limit at any specified life is supposed to follow Weibull distribution. The life of the cable is defined as the number of cycles to the time that one of strands is completely broken. Finally, the fatigue limits of the cables with two clamp types are estimated at the reference life of 500 Mcycles and compared each other based on a bending vibration amplitude.

Fatigue Life Prediction of Suspension Knuckle by CAE Technology (CAE 기법을 이용한 서스펜션 너클의 피로수명 평가)

  • Kim, Y.J.;Suh, M.W.;Suh, S.M.;Suh, J.H.;Kim, J.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.112-121
    • /
    • 1995
  • Various CAE technologies are used in automobile industries for the purpose of design and analysis. In this paper, a fatigue life evaluation system FLEVA based on the local strain approach is developed and the system is applied for the fatigue strength design of the suspension knuckle, an automobile component. Various steps such as material test, finite element analysis and cumulative fatigue damage analysis of the suspension knuckle were taken. The usefulness of the approach was verified by the fatigue test on the suspension knuckle.

  • PDF